Emergent statistical laws in single-cell transcriptomic data

被引:3
|
作者
Lazzardi, Silvia [1 ,2 ]
Valle, Filippo [1 ,2 ]
Mazzolini, Andrea [3 ,4 ]
Scialdone, Antonio [5 ,6 ,7 ]
Caselle, Michele [1 ,2 ]
Osella, Matteo [1 ,2 ]
机构
[1] Univ Turin, Dept Phys, Via P Giuria 1, I-10125 Turin, Italy
[2] INFN, Via P Giuria 1, I-10125 Turin, Italy
[3] Sorbonne Univ, PSL Univ, CNRS, Lab Phys,Ecole Normale Super, F-75005 Paris, France
[4] Univ Paris, F-75005 Paris, France
[5] Helmholtz Zentrum Munchen, Inst Epigenet & Stem Cells, Feodor Lynen Str 21, D-81377 Munich, Germany
[6] Helmholtz Zentrum Munchen, Inst Funct Epigenet, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
[7] Helmholtz Zentrum Munchen, Inst Computat Biol, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany
关键词
GENE-EXPRESSION; RNA-SEQ; DISTRIBUTIONS; FEATURES; REVEALS; ORIGINS; SYSTEMS; GROWTH;
D O I
10.1103/PhysRevE.107.044403
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Large-scale data on single-cell gene expression have the potential to unravel the specific transcriptional programs of different cell types. The structure of these expression datasets suggests a similarity with several other complex systems that can be analogously described through the statistics of their basic building blocks. Transcriptomes of single cells are collections of messenger RNA abundances transcribed from a common set of genes just as books are different collections of words from a shared vocabulary, genomes of different species are specific compositions of genes belonging to evolutionary families, and ecological niches can be described by their species abundances. Following this analogy, we identify several emergent statistical laws in single-cell transcriptomic data closely similar to regularities found in linguistics, ecology, or genomics. A simple mathematical framework can be used to analyze the relations between different laws and the possible mechanisms behind their ubiquity. Importantly, treatable statistical models can be useful tools in transcriptomics to disentangle the actual biological variability from general statistical effects present in most component systems and from the consequences of the sampling process inherent to the experimental technique.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Single-cell Transcriptomic Analysis
    Zheng, Zhihong
    Chen, Enguo
    Lu, Weiguo
    Mouradian, Gary
    Hodges, Matthew
    Liang, Mingyu
    Liu, Pengyuan
    Lu, Yan
    COMPREHENSIVE PHYSIOLOGY, 2020, 10 (02) : 767 - 783
  • [2] Deterministic patterns in single-cell transcriptomic data
    Cao, Zhixing
    Wang, Yiling
    Grima, Ramon
    NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2025, 11 (01)
  • [3] Single-cell transcriptomic profiling of the aging mouse brain
    Ximerakis, Methodios
    Lipnick, Scott L.
    Innes, Brendan T.
    Simmons, Sean K.
    Adiconis, Xian
    Dionne, Danielle
    Mayweather, Brittany A.
    Nguyen, Lan
    Niziolek, Zachary
    Ozek, Ceren
    Butty, Vincent L.
    Isserlin, Ruth
    Buchanan, Sean M.
    Levine, Stuart S.
    Regev, Aviv
    Bader, Gary D.
    Levin, Joshua Z.
    Rubin, Lee L.
    NATURE NEUROSCIENCE, 2019, 22 (10) : 1696 - +
  • [4] Data normalization for addressing the challenges in the analysis of single-cell transcriptomic datasets
    Duran, Raquel Cuevas-Diaz
    Wei, Haichao
    Wu, Jiaqian
    BMC GENOMICS, 2024, 25 (01)
  • [5] A review of computational strategies for denoising and imputation of single-cell transcriptomic data
    Patruno, Lucrezia
    Maspero, Davide
    Craighero, Francesco
    Angaroni, Fabrizio
    Antoniotti, Marco
    Graudenzi, Alex
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)
  • [6] Topological and geometric analysis of cell states in single-cell transcriptomic data
    Huynh, Tram
    Cang, Zixuan
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [7] Cross-Species Analysis of Single-Cell Transcriptomic Data
    Shafer, Maxwell E. R.
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2019, 7
  • [8] Single-Cell Transcriptomic Atlas of Primate Ovarian Aging
    Wang, Si
    Zheng, Yuxuan
    Li, Jingyi
    Yu, Yang
    Zhang, Weiqi
    Song, Moshi
    Liu, Zunpeng
    Min, Zheying
    Hu, Huifang
    Jing, Ying
    He, Xiaojuan
    Sun, Liang
    Ma, Lifang
    Esteban, Concepcion Rodriguez
    Chan, Piu
    Qiao, Jie
    Zhou, Qi
    Belmonte, Juan Carlos Izpisua
    Qu, Jing
    Tang, Fuchou
    Liu, Guang-Hui
    CELL, 2020, 180 (03) : 585 - +
  • [9] Single-cell transcriptomic atlas of primate cardiopulmonary aging
    Ma, Shuai
    Sun, Shuhui
    Li, Jiaming
    Fan, Yanling
    Qu, Jing
    Sun, Liang
    Wang, Si
    Zhang, Yiyuan
    Yang, Shanshan
    Liu, Zunpeng
    Wu, Zeming
    Zhang, Sheng
    Wang, Qiaoran
    Zheng, Aihua
    Duo, Shuguang
    Yu, Yang
    Belmonte, Juan Carlos Izpisua
    Chan, Piu
    Zhou, Qi
    Song, Moshi
    Zhang, Weiqi
    Liu, Guang-Hui
    CELL RESEARCH, 2021, 31 (04) : 415 - 432
  • [10] Time-resolved single-cell transcriptomic sequencing
    Xu, Xing
    Wen, Qianxi
    Lan, Tianchen
    Zeng, Liuqing
    Zeng, Yonghao
    Lin, Shiyan
    Qiu, Minghao
    Na, Xing
    Yang, Chaoyong
    CHEMICAL SCIENCE, 2024, : 19225 - 19246