Long-Term Visual Simultaneous Localization and Mapping: Using a Bayesian Persistence Filter-Based Global Map Prediction

被引:21
作者
Deng, Tianchen [1 ]
Xie, Hongle [2 ]
Wang, Jingchuan [3 ]
Chen, Weidong [4 ,5 ,6 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 12474, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 12474, Peoples R China
[3] Shanghai Jiao Tong Univ, Inst Med Robot, Dept Automat, Shanghai 12474, Peoples R China
[4] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 12474, Peoples R China
[5] Shanghai Jiao Tong Univ, Inst Med Robot, Shanghai 12474, Peoples R China
[6] Shanghai Jiao Tong Univ, Autonomous Robot Lab, Shanghai 12474, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Simultaneous localization and mapping; Location awareness; Visualization; Robots; Time series analysis; Band-pass filters; Optical filters; AUTONOMY;
D O I
10.1109/MRA.2022.3228492
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapidly growing demand for accurate localization in real-world environments, visual simultaneous localization and mapping (SLAM) has received significant attention in recent years. However, those existing methods still suffer from the degradation of localization accuracy in long-term changing environments. To address these problems, we propose a novel long-term SLAM system with map prediction and dynamics removal. First, a visual point-cloud matching algorithm is designed to efficiently fuse 2D pixel information and 3D voxel information. Second, each map point is classified into three types: static, semistatic, and dynamic based on the Bayesian persistence filter (BPF). Then we remove the dynamic map points to eliminate the influence of those map points. We can obtain a global predicted map by modeling the time series of semistatic map points. Finally, we incorporate the predicted global map into a state-of-the-art SLAM method, achieving an efficient visual SLAM system for long-term, dynamic environments. Extensive experiments are carried out on a wheelchair robot in an indoor environment over several months. The results demonstrate that our method has better map prediction accuracy and achieves more robust localization performance.
引用
收藏
页码:36 / 49
页数:14
相关论文
共 20 条
[1]   SLAM in dynamic environments via ML-RANSAC [J].
Bahraini, Masoud S. ;
Bozorg, Mohammad ;
Rad, Ahmad B. .
MECHATRONICS, 2018, 49 :105-118
[2]   DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes [J].
Bescos, Berta ;
Facil, Jose M. ;
Civera, Javier ;
Neira, Jose .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04) :4076-4083
[3]   ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM [J].
Campos, Carlos ;
Elvira, Richard ;
Gomez Rodriguez, Juan J. ;
Montiel, Jose M. M. ;
Tardos, Juan D. .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (06) :1874-1890
[4]   RGB-D SLAM in Dynamic Environments Using Point Correlations [J].
Dai, Weichen ;
Zhang, Yu ;
Li, Ping ;
Fang, Zheng ;
Scherer, Sebastian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (01) :373-389
[5]  
Hashemifar Z, 2020, IEEE INT CONF ROBOT, P7307, DOI [10.1109/ICRA40945.2020.9196913, 10.1109/icra40945.2020.9196913]
[6]   The STRANDS Project Long-Term Autonomy in Everyday Environments [J].
Hawes, Nick ;
Burbridge, Chris ;
Jovan, Ferdian ;
Kunze, Lars ;
Lacerda, Bruno ;
Mudrova, Lenka ;
Young, Jay ;
Wyatt, Jeremy ;
Hebesberger, Denise ;
Koertner, Tobias ;
Ambrus, Rares ;
Bore, Nils ;
Folkesson, John ;
Jensfelt, Patric ;
Beyer, Lucas ;
Hermans, Alexander ;
Leibe, Bastian ;
Aldoma, Aitor ;
Faeulhammer, Thomas ;
Zillich, Michael ;
Vincze, Markus ;
Chinellato, Eris ;
Al-Omari, Muhannad ;
Duckworth, Paul ;
Gatsoulis, Yiannis ;
Hogg, David C. ;
Cohn, Anthony G. ;
Dondrup, Christian ;
Fentanes, Jaime Pulido ;
Krajnik, Tomas ;
Santos, Joao M. ;
Duckett, Tom ;
Hanheide, Marc .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2017, 24 (03) :146-156
[7]   ClusterVO: Clustering Moving Instances and Estimating Visual Odometry for Self and Surroundings [J].
Huang, Jiahui ;
Yang, Sheng ;
Mu, Tai-Jiang ;
Hu, Shi-Min .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :2165-2174
[8]  
Kerl C, 2013, IEEE INT CONF ROBOT, P3748, DOI 10.1109/ICRA.2013.6631104
[9]   Remove, then Revert: Static Point cloud Map Construction using Multiresolution Range Images [J].
Kim, Giseop ;
Kim, Ayoung .
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, :10758-10765
[10]   FreMEn: Frequency Map Enhancement for Long-Term Mobile Robot Autonomy in Changing Environments [J].
Krajnik, Tomas ;
Fentanes, Jaime P. ;
Santos, Joao M. ;
Duckett, Tom .
IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (04) :964-977