Towards cluster duality for Lagrangian and orthogonal Grassmannians

被引:1
作者
Wang, Charles [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
Cluster Algebra; Newton-Okounkov Body; Plabic Graph; NEWTON-OKOUNKOV BODIES;
D O I
10.1016/j.jsc.2022.04.018
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In (2019), Rietsch and Williams relate cluster structures and mirror symmetry for type A Grassmannians Gr(k, n), and use this interaction to construct Newton-Okounkov bodies and associated toric degenerations. In this article we define a cluster seed for the Lagrangian Grassmannian, and prove that the associated Newton-Okounkov body agrees up to unimodular equivalence with a poly-tope obtained from the superpotential defined by Pech and Rietsch on the mirror Orthogonal Grassmannian in Pech and Rietsch (2013). (C)& nbsp;2022 Elsevier Ltd. All rights reserved.
引用
收藏
页码:102 / 121
页数:20
相关论文
共 16 条
[11]   Matching polytopes, toric geometry, and the totally non-negative Grassmannian [J].
Postnikov, Alexander ;
Speyer, David ;
Williams, Lauren .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2009, 30 (02) :173-191
[12]  
Postnikov Alexander, 2006, MATH E PRINTS ARXIVM
[13]   NEWTON-OKOUNKOV BODIES, CLUSTER DUALITY, AND MIRROR SYMMETRY FOR GRASSMANNIANS [J].
Rietsch, K. ;
Williams, L. .
DUKE MATHEMATICAL JOURNAL, 2019, 168 (18) :3437-3527
[14]   A mirror symmetric construction of qHT*(G/P)(q) [J].
Rietsch, Konstanze .
ADVANCES IN MATHEMATICS, 2008, 217 (06) :2401-2442
[15]   Grassmannians and cluster algebras [J].
Scott, JS .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2006, 92 :345-380
[16]   2 POSET POLYTOPES [J].
STANLEY, RP .
DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (01) :9-23