Towards cluster duality for Lagrangian and orthogonal Grassmannians

被引:1
作者
Wang, Charles [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
Cluster Algebra; Newton-Okounkov Body; Plabic Graph; NEWTON-OKOUNKOV BODIES;
D O I
10.1016/j.jsc.2022.04.018
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In (2019), Rietsch and Williams relate cluster structures and mirror symmetry for type A Grassmannians Gr(k, n), and use this interaction to construct Newton-Okounkov bodies and associated toric degenerations. In this article we define a cluster seed for the Lagrangian Grassmannian, and prove that the associated Newton-Okounkov body agrees up to unimodular equivalence with a poly-tope obtained from the superpotential defined by Pech and Rietsch on the mirror Orthogonal Grassmannian in Pech and Rietsch (2013). (C)& nbsp;2022 Elsevier Ltd. All rights reserved.
引用
收藏
页码:102 / 121
页数:20
相关论文
共 16 条
[1]  
Fomin Sergey, 2016, ARXIVE PRINTS ARXIV
[2]  
Fomin Sergey, 2017, ARXIVE PRINTS ARXIV
[3]   COMBINATORICS AND INTERSECTIONS OF SCHUBERT VARIETIES [J].
HILLER, H .
COMMENTARII MATHEMATICI HELVETICI, 1982, 57 (01) :41-59
[4]   Total positivity for the Lagrangian Grassmannian [J].
Karpman, Rachel .
ADVANCES IN APPLIED MATHEMATICS, 2018, 98 :25-76
[5]   Khovanskii Bases, Higher Rank Valuations, and Tropical Geometry [J].
Kaveh, Kiumars ;
Manon, Christopher .
SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2019, 3 (02) :292-336
[6]   Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory [J].
Kaveh, Kiumars ;
Khovanskii, A. G. .
ANNALS OF MATHEMATICS, 2012, 176 (02) :925-978
[7]  
Lam Thomas, 2021, MIRROR CONJECTURE MI
[8]   The B-model connection and mirror symmetry for Grassmannians [J].
Marsh, B. R. ;
Rietsch, K. .
ADVANCES IN MATHEMATICS, 2020, 366
[9]   On Landau-Ginzburg models for quadrics and flat sections of Dubrovin connections [J].
Pech, C. ;
Rietsch, K. ;
Williams, L. .
ADVANCES IN MATHEMATICS, 2016, 300 :275-319
[10]  
Pech C., 2013, ARXIV E PRINTS, V1304, P4958