Prediction model of postoperative pain exacerbation using an intravenous patient-controlled analgesia device and a wearable electrocardiogram sensor

被引:1
作者
Nakanishi, Toshiyuki [1 ,2 ]
Fujiwara, Koichi [2 ]
Sobue, Kazuya [1 ]
机构
[1] Nagoya City Univ, Dept Anesthesiol & Intens Care Med, 1 Kawasumi,Mizuho Cho,Mizuho Ku, Nagoya, Aichi, Japan
[2] Nagoya Univ, Dept Mat Engn, Nagoya, Aichi, Japan
来源
2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC | 2023年
关键词
SURGERY;
D O I
10.1109/EMBC40787.2023.10341072
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There is a need to develop objective and realtime postoperative pain assessment methods in perioperative medicine. Few studies have evaluated the relationship between pain severity and temporal changes of physiological signals in actual postoperative patients. In this study, we developed a machine learning model which was trained from intravenous patient-controlled analgesia (IV-PCA) records and electrocardiogram (ECG) of postoperative patients to predict pain exacerbation. A self-attentive autoencoder (SA-AE) model achieved 54% of sensitivity and a 1.76 times/h of false positive rate.
引用
收藏
页数:4
相关论文
共 21 条
  • [1] An J., 2015, SPECIAL LECT IE, V2, P1, DOI DOI 10.1007/BF00758335
  • [2] Pain Assessment Tool With Electrodermal Activity for Postoperative Patients: Method Validation Study
    Aqajari, Seyed Amir Hossein
    Cao, Rui
    Naeini, Emad Kasaeyan
    Calderon, Michael-David
    Zheng, Kai
    Dutt, Nikil
    Liljeberg, Pasi
    Salantera, Sanna
    Nelson, Ariana M.
    Rahmani, Amir M.
    [J]. JMIR MHEALTH AND UHEALTH, 2021, 9 (05):
  • [3] Ensemble neural network approach detecting pain intensity from facial expressions
    Bargshady, Ghazal
    Zhou, Xujuan
    Deo, Ravinesh C.
    Soar, Jeffrey
    Whittaker, Frank
    Wang, Hua
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 109
  • [4] Assessment of pain
    Breivik, H.
    Borchgrevink, P. C.
    Allen, S. M.
    Rosseland, L. A.
    Romundstad, L.
    Hals, E. K. Breivik
    Kvarstein, G.
    Stubhaug, A.
    [J]. BRITISH JOURNAL OF ANAESTHESIA, 2008, 101 (01) : 17 - 24
  • [5] The Incidence and Severity of Postoperative Pain following Inpatient Surgery
    Buvanendran, Asokumar
    Fiala, Jacqueline
    Patel, Karishma A.
    Golden, Alexandra D.
    Moric, Mario
    Kroin, Jeffrey S.
    [J]. PAIN MEDICINE, 2015, 16 (12) : 2277 - 2283
  • [6] Psychometric comparison of three behavioural scales for the assessment of pain in critically ill patients unable to self-report
    Chanques, Gerald
    Pohlman, Anne
    Kress, John P.
    Molinari, Nicolas
    de Jong, Audrey
    Jaber, Samir
    Hall, Jesse B.
    [J]. CRITICAL CARE, 2014, 18 (05):
  • [7] Open versus laparoscopic cholecystectomy in acute cholecystitis. Systematic review and meta-analysis
    Coccolini, Federico
    Catena, Fausto
    Pisano, Michele
    Gheza, Federico
    Fagiuoli, Stefano
    Di Saverio, Salomone
    Leandro, Gioacchino
    Montori, Giulia
    Ceresoli, Marco
    Corbella, Davide
    Sartelli, Massimo
    Sugrue, Michael
    Ansaloni, Luca
    [J]. INTERNATIONAL JOURNAL OF SURGERY, 2015, 18 : 196 - 204
  • [8] Real-driving-implementable drowsy driving detection method using heart rate variability based on long short-term memory and autoencoder
    Fujiwara, Koichi
    Hori, Kentaro
    Fujiwara, Koichi
    Kano, Manabu
    [J]. IFAC PAPERSONLINE, 2021, 54 (15): : 526 - 531
  • [9] Pain Intensity on the First Day after Surgery A Prospective Cohort Study Comparing 179 Surgical Procedures
    Gerbershagen, Hans J.
    Aduckathil, Sanjay
    van Wijck, Albert J. M.
    Peelen, Linda M.
    Kalkman, Cor J.
    Meissner, Winfried
    [J]. ANESTHESIOLOGY, 2013, 118 (04) : 934 - 944
  • [10] HybNet: a hybrid network structure for pain intensity estimation
    Huang, Yibo
    Qing, Linbo
    Xu, Shengyu
    Wang, Lu
    Peng, Yonghong
    [J]. VISUAL COMPUTER, 2022, 38 (03) : 871 - 882