Distinct clinical profiles and post-transplant outcomes among kidney transplant recipients with lower education levels: uncovering patterns through machine learning clustering

被引:3
作者
Thongprayoon, Charat [1 ]
Miao, Jing [1 ]
Jadlowiec, Caroline [2 ]
Mao, Shennen A. [3 ]
Mao, Michael [4 ]
Leeaphorn, Napat [4 ]
Kaewput, Wisit [5 ]
Pattharanitima, Pattharawin [6 ]
Valencia, Oscar A. Garcia [1 ]
Tangpanithandee, Supawit [1 ,7 ]
Krisanapan, Pajaree [1 ,6 ]
Suppadungsuk, Supawadee [1 ,7 ]
Nissaisorakarn, Pitchaphon [8 ]
Cooper, Matthew [9 ]
Cheungpasitporn, Wisit [1 ]
机构
[1] Mayo Clin, Dept Med, Div Nephrol & Hypertens, Rochester, MN 55905 USA
[2] Mayo Clin, Div Transplant Surg, Phoenix, AZ USA
[3] Mayo Clin, Div Transplant Surg, Jacksonville, FL USA
[4] Mayo Clin, Dept Med, Div Nephrol & Hypertens, Jacksonville, FL USA
[5] Phramongkutklao Coll Med, Dept Mil & Community Med, Bangkok, Thailand
[6] Thammasat Univ, Dept Internal Med, Pathum Thani, Thailand
[7] Mahidol Univ, Ramathibodi Hosp, Chakri Naruebodindra Med Inst, Samut Prakan, Thailand
[8] Harvard Med Sch, Massachusetts Gen Hosp, Dept Med, Div Nephrol, Boston, MA USA
[9] Med Coll Wisconsin, Div Transplant Surg, Milwaukee, WI USA
关键词
Low education level; kidney transplant; post-transplantation outcome; clustering; machine learning; SOCIOECONOMIC-STATUS; CLASS DISCOVERY; DISPARITIES; SURVIVAL; GRAFT;
D O I
10.1080/0886022X.2023.2292163
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
BackgroundEducational attainment significantly influences post-transplant outcomes in kidney transplant patients. However, research on specific attributes of lower-educated subgroups remains underexplored. This study utilized unsupervised machine learning to segment kidney transplant recipients based on education, further analyzing the relationship between these segments and post-transplant results.MethodsUsing the OPTN/UNOS 2017-2019 data, consensus clustering was applied to 20,474 kidney transplant recipients, all below a college/university educational threshold. The analysis concentrated on recipient, donor, and transplant features, aiming to discern pivotal attributes for each cluster and compare post-transplant results.ResultsFour distinct clusters emerged. Cluster 1 comprised younger, non-diabetic, first-time recipients from non-hypertensive younger donors. Cluster 2 predominantly included white patients receiving their first-time kidney transplant either preemptively or within three years, mainly from living donors. Cluster 3 included younger re-transplant recipients, marked by elevated PRA, fewer HLA mismatches. In contrast, Cluster 4 captured older, diabetic patients transplanted after prolonged dialysis duration, primarily from lower-grade donors. Interestingly, Cluster 2 showcased the most favorable post-transplant outcomes. Conversely, Clusters 1, 3, and 4 revealed heightened risks for graft failure and mortality in comparison.ConclusionsThrough unsupervised machine learning, this study proficiently categorized kidney recipients with lesser education into four distinct clusters. Notably, the standout performance of Cluster 2 provides invaluable insights, underscoring the necessity for adept risk assessment and tailored transplant strategies, potentially elevating care standards for this patient cohort.
引用
收藏
页数:12
相关论文
共 45 条
[1]   Candidate Comprehension of Key Concepts in Kidney Transplantation [J].
Ahsanuddin, Sayeeda ;
Bento, Sandra ;
Swerdlow, Nicholas ;
Cervera, Ixel ;
Kayler, Liise K. .
ANNALS OF TRANSPLANTATION, 2015, 20 :124-131
[2]  
Altheaby A, 2019, AM J CARDIOVASC DIS, V9, P49
[3]   Nearest Consensus Clustering Classification to Identify Subclasses and Predict Disease [J].
Alyousef A.A. ;
Nihtyanova S. ;
Denton C. ;
Bosoni P. ;
Bellazzi R. ;
Tucker A. .
Journal of Healthcare Informatics Research, 2018, 2 (4) :402-422
[4]   The Interplay of Socioeconomic Status, Distance to Center, and Interdonor Service Area Travel on Kidney Transplant Access and Outcomes [J].
Axelrod, David A. ;
Dzebisashvili, Nino ;
Schnitzler, Mark A. ;
Salvalaggio, Paolo R. ;
Segev, Dorry L. ;
Gentry, Sommer E. ;
Tuttle-Newhall, Janet ;
Lentine, Krista L. .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2010, 5 (12) :2276-2288
[5]   Living or deceased-donor kidney transplant: the role of psycho-socioeconomic factors and outcomes associated with each type of transplant [J].
Basiri, Abbas ;
Taheri, Maryam ;
Khoshdel, Alireza ;
Golshan, Shabnam ;
Mohseni-rad, Hamed ;
Borumandnia, Nasrin ;
Simforoosh, Nasser ;
Nafar, Mohsen ;
Aliasgari, Majid ;
Nourbala, Mohammad Hossein ;
Pourmand, Gholamreza ;
Farhangi, Soudabeh ;
Khalili, Nastaran .
INTERNATIONAL JOURNAL FOR EQUITY IN HEALTH, 2020, 19 (01)
[6]   Living Donor Kidney Transplantation Improves Graft and Recipient Survival in Patients with Multiple Kidney Transplants [J].
Bellini, Maria Irene ;
Courtney, Aisling E. ;
McCaughan, Jennifer A. .
JOURNAL OF CLINICAL MEDICINE, 2020, 9 (07) :1-12
[7]   Social Aspects of Long-Term Kidney Transplant Outcomes [J].
Denisov, Viktor ;
Zakharov, Vadym ;
Komisarenko, Eleonora ;
Oleshchenko, Nikolay ;
Onishchenko, Eugene ;
Sidorkin, Alexander ;
Golubova, Tatyana ;
Zakharova, Olga ;
Varybrus, Svetlana .
TRANSPLANTATION, 2018, 102 :S617-S617
[8]   Post-transplant outcomes in recipients of living donor kidneys and intended recipients of living donor kidneys [J].
Dharia, Atit A. ;
Huang, Michael ;
Nash, Michelle M. ;
Dacouris, Niki ;
Zaltzman, Jeffrey S. ;
Prasad, G. V. Ramesh .
BMC NEPHROLOGY, 2022, 23 (01)
[9]   Training and Validation of Deep Neural Networks for the Prediction of 90-Day Post-Liver Transplant Mortality Using UNOS Registry Data [J].
Ershoff, Brent D. ;
Lee, Christine K. ;
Wray, Christopher L. ;
Agopian, Vatche G. ;
Urban, Gregor ;
Baldi, Pierre ;
Cannesson, Maxime .
TRANSPLANTATION PROCEEDINGS, 2020, 52 (01) :246-258
[10]   Role of socioeconomic status in kidney transplant outcome [J].
Goldfarb-Rumyantzev, Alexander S. ;
Koford, James K. ;
Baird, Bradley C. ;
Chelamcharla, Madhukar ;
Habib, Arsalan N. ;
Wang, Ben-Jr ;
Lin, Shih-Jui ;
Shihab, Fuad ;
Isaacs, Ross B. .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2006, 1 (02) :313-322