Orbit classification in the restricted three-body problem with the effect of three-body interaction

被引:5
作者
Suraj, Md Sanam [1 ,2 ]
Alhowaity, Sawsan [3 ]
Aggarwal, Rajiv [2 ,4 ]
Asique, Md Chand [5 ]
机构
[1] Univ Delhi, Sri Aurobindo Coll, Dept Math, New Delhi 110017, India
[2] Ctr Fundamental Res Space Dynam & Celestial Mech, Delhi, India
[3] Shaqra Univ, Coll Sci & Humanities, Dept Math, Shaqra, Saudi Arabia
[4] Univ Delhi, Deshbandhu Coll, Dept Math, New Delhi 110019, India
[5] Univ Delhi, Deshbandhu Coll, Dept Phys, New Delhi 110019, India
关键词
Restricted three-body problem; Three-body interaction; Orbit classifications; Basins of escape; HAMILTONIAN-SYSTEMS; COPENHAGEN PROBLEM; CHANNELS; ESCAPES;
D O I
10.1016/j.newast.2022.101894
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The modified circular restricted three-body problem is numerically investigated to classify the orbits of the test particle. We perform a numerical analysis on the various two-dimensional plane, i.e., (x, C)-plane, (y, C)-plane, and (x,y)-plane to classify the initial conditions on the these planes and distinguish following four types of orbits: (i) the bounded orbits, (ii) collision with the primary m(1), (iii) collision with the primary m(2), and (iv) escaping orbits. The motion of the test particle are evaluated numerically, by illustrating the color-coded diagrams (CCDs), where the starting conditions are linked to the orbit type and numerically evaluated as a function of the Jacobian constant C, the initial value of the x-co-ordinate and the Jacobian constant.. or the x,y-co-ordinates, or the y-co-ordinate and Jacobian constant. Moreover, in the mean time we have also noted the associated time for classifications of each of the starting conditions on the various 2D-planes.
引用
收藏
页数:16
相关论文
共 37 条
[1]   Wada basins and chaotic invariant sets in the Henon-Heiles system -: art. no. 066208 [J].
Aguirre, J ;
Vallejo, JC ;
Sanjuán, MAF .
PHYSICAL REVIEW E, 2001, 64 (06) :11
[2]   Fractal structures in nonlinear dynamics [J].
Aguirre, Jacobo ;
Viana, Ricardo L. ;
Sanjuan, Miguel A. F. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :333-386
[3]   Orbital Dynamics in a Triaxial Barred Galaxy Model. I. The 2D System [J].
Alrebdi, H. I. ;
Dubeibe, Fredy L. ;
Zotos, Euaggelos E. .
ASTROPHYSICAL JOURNAL, 2021, 920 (01)
[4]  
Bosanac N., 2012, M.Sc. thesis
[5]  
Bosanac N, 2013, 23 AAS AIAA SPAC FLI, P13
[6]  
CONTOPOULOS G, 1990, ASTRON ASTROPHYS, V231, P41
[7]   FRACTAL PROPERTIES OF ESCAPE FROM A 2-DIMENSIONAL POTENTIAL [J].
CONTOPOULOS, G ;
KANDRUP, HE ;
KAUFMANN, D .
PHYSICA D, 1993, 64 (1-3) :310-323
[8]   Effect of three-body interaction on the number and location of equilibrium points of the restricted three-body problem [J].
Douskos, C. N. .
ASTROPHYSICS AND SPACE SCIENCE, 2015, 356 (02) :251-268
[9]   Fractal basins of escape and the formation of spiral arms in a galactic potential with a bar [J].
Ernst, Andreas ;
Peters, Thomas .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 443 (03) :2579-2589
[10]   Statistical properties for an open oval billiard: An investigation of the escaping basins [J].
Hansen, Matheus ;
da Costa, Diogo Ricardo ;
Caldas, Ibere L. ;
Leonel, Edson D. .
CHAOS SOLITONS & FRACTALS, 2018, 106 :355-362