Periodic waves in the discrete mKdV equation: Modulational instability and rogue waves

被引:15
|
作者
Chen, Jinbing [1 ]
Pelinovsky, Dmitry E. [2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
[2] McMaster Univ, Dept Math, Hamilton, ON L8S 4K1, Canada
基金
中国国家自然科学基金;
关键词
Discrete mKdV equation; Eigenvalues; Periodic waves; TRAVELING-WAVES; TRACE IDENTITY; STABILITY;
D O I
10.1016/j.physd.2023.133652
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive the traveling periodic waves of the discrete modified Korteweg-de Vries equation by using a nonlinearization method. Modulational stability of the traveling periodic waves is studied from the squared eigenfunction relation and the Lax spectrum. We use numerical approximations to show that, similar to the continuous counterpart, the family of dnoidal solutions is modulationally stable and the family of cnoidal solutions is modulationally unstable. Consequently, algebraic solitons propagate on the dnoidal wave background and rogue waves (spatially and temporally localized events) are dynamically generated on the cnoidal wave background.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Ion-acoustic waves in ultracold neutral plasmas: Modulational instability and dissipative rogue waves
    El-Tantawy, S. A.
    PHYSICS LETTERS A, 2017, 381 (08) : 787 - 791
  • [22] Real world ocean rogue waves explained without the modulational instability
    Fedele, Francesco
    Brennan, Joseph
    de Leon, Sonia Ponce
    Dudley, John
    Dias, Frederic
    SCIENTIFIC REPORTS, 2016, 6
  • [23] Rogue Waves in the Southern North Sea-The Role of Modulational Instability
    Teutsch, Ina
    Weisse, Ralf
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2023, 53 (01) : 269 - 286
  • [24] NONLINEAR MODULATIONAL INSTABILITY OF PERIODIC-WAVES GOVERNED BY THE KURAMOTO-SIVASHINSKY EQUATION
    NEPOMNYASHCHY, AA
    EUROPHYSICS LETTERS, 1995, 31 (08): : 437 - 441
  • [25] Low relativistic effects on the modulational instability of rogue waves in electronegative plasmas
    Panguetna, Cherif S.
    Tabi, Conrad B.
    Kofane, Timoleon C.
    JOURNAL OF THEORETICAL AND APPLIED PHYSICS, 2019, 13 (03) : 237 - 249
  • [26] Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrodinger equation
    Yang, Yunqing
    Yan, Zhenya
    Malomed, Boris A.
    CHAOS, 2015, 25 (10)
  • [27] Modulational instability and position controllable discrete rogue waves with interaction phenomena in the semi-discrete complex coupled dispersionless system
    Lin, Zhe
    Wen, Xiao-Yong
    WAVE MOTION, 2022, 112
  • [28] Modulational instability, rogue waves, and envelope solitons in opposite polarity dusty plasmas
    Rahman, M. H.
    Chowdhury, N. A.
    Mannan, A.
    Rahman, M.
    Mamun, A. A.
    CHINESE JOURNAL OF PHYSICS, 2018, 56 (05) : 2061 - 2068
  • [29] Rogue periodic waves of the focusing nonlinear Schrodinger equation
    Chen, Jinbing
    Pelinovsky, Dmitry E.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2210):
  • [30] Rogue waves in the basin of intermediate depth and the possibility of their formation due to the modulational instability
    I. I. Didenkulova
    I. F. Nikolkina
    E. N. Pelinovsky
    JETP Letters, 2013, 97 : 194 - 198