Periodic waves in the discrete mKdV equation: Modulational instability and rogue waves

被引:21
作者
Chen, Jinbing [1 ]
Pelinovsky, Dmitry E. [2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
[2] McMaster Univ, Dept Math, Hamilton, ON L8S 4K1, Canada
基金
中国国家自然科学基金;
关键词
Discrete mKdV equation; Eigenvalues; Periodic waves; TRAVELING-WAVES; TRACE IDENTITY; STABILITY;
D O I
10.1016/j.physd.2023.133652
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive the traveling periodic waves of the discrete modified Korteweg-de Vries equation by using a nonlinearization method. Modulational stability of the traveling periodic waves is studied from the squared eigenfunction relation and the Lax spectrum. We use numerical approximations to show that, similar to the continuous counterpart, the family of dnoidal solutions is modulationally stable and the family of cnoidal solutions is modulationally unstable. Consequently, algebraic solitons propagate on the dnoidal wave background and rogue waves (spatially and temporally localized events) are dynamically generated on the cnoidal wave background.
引用
收藏
页数:16
相关论文
共 44 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS AND FOURIER-ANALYSIS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :1011-1018
[3]   Extreme waves statistics for the Ablowitz-Ladik system [J].
Agafontsev, D. S. .
JETP LETTERS, 2014, 98 (11) :731-734
[4]   Modulation instability, Fermi-Pasta-Ulam recurrence, rogue waves, nonlinear phase shift, and exact solutions of the Ablowitz-Ladik equation [J].
Akhmediev, Nail ;
Ankiewicz, Adrian .
PHYSICAL REVIEW E, 2011, 83 (04)
[5]   Discrete rogue waves of the Ablowitz-Ladik and Hirota equations [J].
Ankiewicz, Adrian ;
Akhmediev, Nail ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2010, 82 (02)
[6]  
Arnold V. I., 1978, Mathematical methods of classical mechanics
[7]  
Bronski JC, 2016, LECT NOTES PHYS, V908, P83, DOI 10.1007/978-3-319-20690-5_4
[8]  
Bronski JC, 2011, P ROY SOC EDINB A, V141, P1141, DOI 10.1017/S0308210510001216
[9]  
CAO CW, 1990, NONLINEAR PHYSICS RE, P68
[10]   Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrodinger equation [J].
Chen, Jinbing ;
Pelinovsky, Dmitry E. .
PHYSICAL REVIEW E, 2021, 103 (06)