Weighted Schatten p-norm and Laplacian scale mixture-based low-rank and sparse decomposition for foreground-background separation

被引:0
作者
Fan, Ruibo [1 ]
Jing, Mingli [1 ]
Li, Lan [2 ]
Shi, Jingang [3 ]
Wei, Yufeng [4 ]
机构
[1] Xian Shiyou Univ, Sch Elect Engn, Xian, Peoples R China
[2] Xian Shiyou Univ, Sch Sci, Xian, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Software Engn, Xian, Peoples R China
[4] Northwestern Polytech Univ, Sch Comp Sci, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
foreground-background separation; Laplacian scale mixture; low-rank approximation; sparse representation; weighted Schatten; p-norm; TRUNCATED NUCLEAR NORM; MOVING OBJECT DETECTION; ROBUST-PCA; MATRIX COMPLETION; SUBTRACTION;
D O I
10.1117/1.JEI.32.2.023021
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low-rank and sparse decomposition (LRSD) plays a vital role in foreground-background separation. The existing LRSD methods have the drawback: imprecise surrogate functions of rank and sparsity. We propose the weighted Schatten p-norm (WSN) and Laplacian scale mixture (LSM) method based on LRSD for foreground-background separation, which introduces the WSN and LSM to improve this drawback. To demonstrate the performance of the proposed method, it is applied to foreground-background separation and gets the highest average F-measure score.
引用
收藏
页数:11
相关论文
共 46 条
[1]   Deep neural network concepts for background subtraction: A systematic review and comparative evaluation [J].
Bouwmans, Thierry ;
Jayed, Sajid ;
Sultana, Maryam ;
Jung, Soon Ki .
NEURAL NETWORKS, 2019, 117 :8-66
[2]   Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset [J].
Bouwmans, Thierry ;
Sobral, Andrews ;
Javed, Sajid ;
Jung, Soon Ki ;
Zahzah, El-Hadi .
COMPUTER SCIENCE REVIEW, 2017, 23 :1-71
[3]   On the Applications of Robust PCA in Image and Video Processing [J].
Bouwmans, Thierry ;
Javed, Sajid ;
Zhang, Hongyang ;
Lin, Zhouchen ;
Otazo, Ricardo .
PROCEEDINGS OF THE IEEE, 2018, 106 (08) :1427-1457
[4]   Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance [J].
Bouwmans, Thierry ;
Zahzah, El Hadi .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2014, 122 :22-34
[5]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)
[6]   Recovering low-rank and sparse matrix based on the truncated nuclear norm [J].
Cao, Feilong ;
Chen, Jiaying ;
Ye, Hailiang ;
Zhao, Jianwei ;
Zhou, Zhenghua .
NEURAL NETWORKS, 2017, 85 :10-20
[7]   Total Variation Regularized RPCA for Irregularly Moving Object Detection Under Dynamic Background [J].
Cao, Xiaochun ;
Yang, Liang ;
Guo, Xiaojie .
IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (04) :1014-1027
[8]  
Chen Lixiat, 2019, Journal of Computer Applications, V39, P1170, DOI 10.11772/j.issn.1001-9081.2018092038
[9]  
Garrigues P., 2010, ADV NEURAL INFORM PR, V23
[10]   Weighted Nuclear Norm Minimization and Its Applications to Low Level Vision [J].
Gu, Shuhang ;
Xie, Qi ;
Meng, Deyu ;
Zuo, Wangmeng ;
Feng, Xiangchu ;
Zhang, Lei .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2017, 121 (02) :183-208