Control of separation shock unsteadiness in an incident-shock-induced interaction

被引:2
作者
Manisankar, C. [1 ]
Verma, S. B. [1 ]
机构
[1] CSIR Natl Aerosp Labs, Expt Aerodynam Div, Bangalore 560017, Karnataka, India
关键词
LAYER INTERACTION CONTROL; VORTEX GENERATORS; WAVE STRUCTURE; FIN; FLOW;
D O I
10.1007/s00193-023-01129-2
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Separation shock unsteadiness in an incident-shock-induced interaction with and without control is evaluated in a Mach 2.05 flow using a 14(circle)shock generator. An array of mechanical vortex generators (MVGs) in the form of rectangular vanes (MVG1), ramp vanes (MVG2), and a delta ramp (MVG3) is placed 14 delta upstream of the interaction region ( delta= 5.2mm being the local boundary layer thickness at the interaction). Among all the devices tested, MVG1 shows a maximum reduction of the separation length (about 28% relative to the no-control case). The spectra at separation also show a shift in the dominant frequency from 220Hz without control to 539Hz withMVG1. Interestingly, the peak rms (root mean square) value is seen to occur with control at much larger intermittency values (gamma(sigma), (max) = 0.92 for MVG1) in contrast to the no-control case in which it occurs gamma(sigma), (max) = 0.5 as reported so far. The auto-correlation at the separation and reattachment shock locations indicates the presence of relatively small-scale structures with control as compared to the case without control. Out of all the control cases tested, MVG1 exhibits better separation control with a relatively lower unsteadiness level.
引用
收藏
页码:81 / 97
页数:17
相关论文
共 50 条
[41]   Control of shock-wave boundary layer interaction using steady micro-jets [J].
Verma, S. B. ;
Manisankar, C. ;
Akshara, P. .
SHOCK WAVES, 2015, 25 (05) :535-543
[42]   Mitigation of shock-induced flow separation over an axisymmetric flared body using ramped vanes [J].
Nilavarasan, T. ;
Joshi, G. N. ;
Misra, A. ;
Manisankar, C. ;
Verma, S. B. .
JOURNAL OF VISUALIZATION, 2023, 26 (06) :1279-1297
[43]   Magnetohydrodynamic Control of a Hypersonic Shock-Turbulent Boundary Layer Interaction [J].
Luo, Shichao ;
Wu, Liyin ;
Chang, Yu .
JOURNAL OF AEROSPACE ENGINEERING, 2024, 37 (03)
[44]   Shock-Capturing Anomaly in the Interaction of Unsteady Disturbances with a Stationary Shock [J].
Chuvakhov, Pavel, V .
AIAA JOURNAL, 2021, 59 (08) :3241-3251
[45]   Theoretical solutions to three-dimensional asymmetrical shock/shock interaction [J].
Xiang, GaoXiang ;
Wang, Chun ;
Hu, ZongMin ;
Li, XuDong ;
Jiang, ZongLin .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2016, 59 (08) :1208-1216
[46]   Perforated Wall in Controlling the Separation Bubble Due to Shock Wave -Boundary Layer Interaction [J].
Sekar, K. Raja ;
Jegadheeswaran, S. ;
Kannan, R. ;
Manigandan, P. .
INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES, 2022, 39 (02) :223-231
[47]   Suppression of shock-induced separation in fluids having large bulk viscosities [J].
Bahmani, F. ;
Cramer, M. S. .
JOURNAL OF FLUID MECHANICS, 2014, 756 :R2
[48]   Two-Dimensional Interaction between an Incident Shock and a Turbulent Boundary Layer in the Presence of an Entropy Layer [J].
Borovoi, V. Ya. ;
Egorov, I. V. ;
Noev, A. Yu. ;
Skuratov, A. S. ;
Struminskaya, I. V. .
FLUID DYNAMICS, 2011, 46 (06) :917-934
[49]   Shock turbulent interaction during shock-wave/boundary layer interaction over double wedge [J].
Pal, Ribhu ;
Roy, Arnab .
PHYSICS OF FLUIDS, 2024, 36 (10)
[50]   Experimental investigation of the micro-ramp based shock wave and turbulent boundary layer interaction control [J].
Wang Bo ;
Liu Weidong ;
Zhao Yuxin ;
Fan Xiaoqiang ;
Wang Chao .
PHYSICS OF FLUIDS, 2012, 24 (05)