Artificial phosphate solid electrolyte interphase enables stable MnO2 cathode for zinc ion batteries

被引:17
作者
Chen, Junli [1 ]
Ma, Jianhui [1 ]
Liu, Bowen [1 ]
Li, Ziyan [1 ]
Zhang, Xiaojun [1 ]
Sun, Shirong [1 ,2 ]
Lu, Ke [3 ]
Yin, Jian [4 ]
Chen, Suli [6 ]
Zu, Xihong [1 ,2 ]
Zhang, Zejie [2 ,5 ]
Qiu, Xueqing [1 ,2 ]
Qin, Yanlin [1 ,2 ]
Zhang, Wenli [1 ,2 ,5 ]
机构
[1] Guangdong Univ Technol GDUT, Sch Chem Engn & Light Ind, Guangdong Prov Key Lab Plant Resources Biorefinery, 100 Waihuan Xi Rd, Guangzhou 510006, Peoples R China
[2] Jieyang Branch Chem, Chem Engn Guangdong Lab, Rongjiang Lab, Jieyang 515200, Peoples R China
[3] Anhui Univ, Inst Phys Sci & Informat Technol, Key Lab Struct, Funct Regulat Hybrid Mat Minist Educ, Hefei 230601, Peoples R China
[4] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div, Mat Sci & Engn, Thuwal 239556900, Saudi Arabia
[5] Guangdong Univ Technol GDUT, Sch Adv Mfg, Jieyang 515200, Peoples R China
[6] Jiangnan Univ, Sch Chem & Mat Engn, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Zinc ion battery; Manganese dioxide; Hydroxyethylene-11; -diphosphonic acid; Artificial solid electrolyte interphase; ELECTROCHEMICAL ENERGY-STORAGE; CHEMISTRY; MECHANISM;
D O I
10.1016/j.coco.2023.101524
中图分类号
TB33 [复合材料];
学科分类号
摘要
Rechargeable aqueous zinc-ion batteries based on manganese-based cathode materials are promising energy storage devices, but the low conductivity and dissolution issues of manganese-based cathode materials lead to instability. In order to address these issues, this work proposes an in situ reaction between hydroxyethylene-1,1,diphosphonic acid and manganese dioxide to create a phosphorylated manganese dioxide (PMO) cathode on which a phosphate solid electrolyte interphase was built. This artificial organic electrolyte interface improves the stability of the cathode during cycling, allowing it to deliver capacities of 250 mAh g(-1) and 105 mAh g(-1) at current densities of 0.1 A g(-1) and 1.0 A g(-1), respectively. The intrinsic mechanism of this phosphate retards the side reactions caused by water attack. This strategy provides a general design strategy for manganese-based cathode materials for aqueous zinc ion batteries.
引用
收藏
页数:9
相关论文
共 50 条
[1]   Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System [J].
Alfaruqi, Muhammad H. ;
Mathew, Vinod ;
Gim, Jihyeon ;
Kim, Sungjin ;
Song, Jinju ;
Baboo, Joseph P. ;
Choi, Sun H. ;
Kim, Jaekook .
CHEMISTRY OF MATERIALS, 2015, 27 (10) :3609-3620
[2]  
Ammundsen B, 2001, ADV MATER, V13, P943, DOI 10.1002/1521-4095(200107)13:12/13<943::AID-ADMA943>3.0.CO
[3]  
2-J
[4]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[5]   Successive electrochemical conversion reaction to understand the performance of aqueous Zn/MnO2 batteries with Mn2+ additive [J].
Chen, H. ;
Cai, S. ;
Wu, Y. ;
Wang, W. ;
Xu, M. ;
Bao, S. -J. .
MATERIALS TODAY ENERGY, 2021, 20
[6]  
Chen JL, 2022, CHEMSUSCHEM, V15, DOI [10.1002/cssc.202200732, 10.1002/chem.202200732]
[7]   Hierarchically porous MnO2 microspheres with enhanced adsorption performance [J].
Chen, Ruixue ;
Yu, Jiaguo ;
Xiao, Wei .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (38) :11682-11690
[8]   Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties [J].
Devaraj, S. ;
Munichandraiah, N. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (11) :4406-4417
[9]  
Fang G., 2019, Zinc-Ion Battery, V29
[10]   Recent Advances in Aqueous Zinc-Ion Batteries [J].
Fang, Guozhao ;
Zhou, Jiang ;
Pan, Anqiang ;
Liang, Shuquan .
ACS ENERGY LETTERS, 2018, 3 (10) :2480-2501