Dredging the Charge-Carrier Transfer Pathway for Efficient Low-Dimensional Ruddlesden-Popper Perovskite Solar Cells

被引:31
作者
Li, Pengwei [1 ]
Yan, Linfang [1 ]
Cao, Qingli [2 ]
Liang, Chao [3 ]
Zhu, He [2 ]
Peng, Sihui [2 ]
Yang, Yongpeng [2 ]
Liang, Yuncai [2 ]
Zhao, Rudai [1 ,4 ]
Zang, Shuangquan [1 ]
Zhang, Yiqiang [1 ]
Song, Yanlin [4 ]
机构
[1] Zhengzhou Univ, Coll Chem, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ, Henan Inst Adv Technol, Zhengzhou 450001, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Phys, MOE Key Lab Nonequilibrium Synth & Modulat Condens, Xian 710049, Peoples R China
[4] Chinese Acad Sci ICCAS, Inst Chem, CAS Res Educ Ctr Excellence Mol Sci, Beijing Engn Res Ctr Nanomat Green Printing Techno, Beijing 100190, Peoples R China
基金
国家重点研发计划; 中国博士后科学基金;
关键词
Exciton Binding Energy; Perovskite; Ruddlesden-Popper; Single Crystals; Solar Cells; SYNTHETIC CONTROL; CONFINEMENT;
D O I
10.1002/anie.202217910
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Low-dimensional Ruddlesden-Popper (LDRP) perovskites still suffer from inferior carrier transport properties. Here, we demonstrate that efficient exciton dissociation and charge transfer can be achieved in LDRP perovskite by introducing gamma-aminobutyric acid (GABA) as a spacer. The hydrogen bonding links adjacent spacing sheets in (GABA)(2)MA(3)Pb(4)I(13) (MA=CH3NH3+), leading to the charges localized in the van der Waals gap, thereby constructing "charged-bridge" for charge transfer through the spacing region. Additionally, the polarized GABA weakens dielectric confinement, decreasing the (GABA)(2)MA(3)Pb(4)I(13) exciton binding energy as low as approximate to 73 meV. Benefiting from these merits, the resultant GABA-based solar cell yields a champion power conversion efficiency (PCE) of 18.73 % with enhanced carrier transport properties. Furthermore, the unencapsulated device maintains 92.8 % of its initial PCE under continuous illumination after 1000 h and only lost 3 % of its initial PCE under 65 degrees C for 500 h.
引用
收藏
页数:9
相关论文
共 46 条
[1]  
Ahmad S, 2019, JOULE, V3, P794, DOI 10.1016/j.joule.2018.11.026
[2]  
[Anonymous], 2020, ANGEW CHEM, V132, P6976
[3]  
[Anonymous], 2022, ANGEW CHEM, V134
[4]  
[Anonymous], 2021, ANGEW CHEM, V133, P7945
[5]  
[Anonymous], 2019, ANGEW CHEM, V131, P9509
[6]   2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications [J].
Cao, Duyen H. ;
Stoumpos, Constantinos C. ;
Farha, Omar K. ;
Hupp, Joseph T. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (24) :7843-7850
[7]   Two-dimensional perovskites: Impacts of species, components, and properties of organic spacers on solar cells [J].
Cao, Qingli ;
Li, Pengwei ;
Chen, Wei ;
Zang, Shuangquan ;
Han, Liyuan ;
Zhang, Yiqiang ;
Song, Yanlin .
NANO TODAY, 2022, 43
[8]   Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers [J].
Chen, Wei ;
Wu, Yongzhen ;
Yue, Youfeng ;
Liu, Jian ;
Zhang, Wenjun ;
Yang, Xudong ;
Chen, Han ;
Bi, Enbing ;
Ashraful, Islam ;
Graetzel, Michael ;
Han, Liyuan .
SCIENCE, 2015, 350 (6263) :944-948
[9]   Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar organics [J].
Cheng, Bin ;
Li, Ting-You ;
Maity, Partha ;
Wei, Pai-Chun ;
Nordlund, Dennis ;
Ho, Kang-Ting ;
Lien, Der-Hsien ;
Lin, Chun-Ho ;
Liang, Ru-Ze ;
Miao, Xiaohe ;
Ajia, Idris A. ;
Yin, Jun ;
Sokaras, Dimosthenis ;
Javey, Ali ;
Roqan, Iman S. ;
Mohammed, Omar F. ;
He, Jr-Hau .
COMMUNICATIONS PHYSICS, 2018, 1
[10]   Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities [J].
Espinosa, E ;
Molins, E ;
Lecomte, C .
CHEMICAL PHYSICS LETTERS, 1998, 285 (3-4) :170-173