Self-supervised deep-learning two-photon microscopy

被引:15
作者
He, Yuezhi [1 ,2 ]
Yao, Jing [1 ,2 ]
Liu, Lina [1 ,2 ]
Gao, Yufeng [1 ,2 ]
Yu, Jia [1 ,2 ]
Ye, Shiwei [1 ,2 ]
Li, Hui [1 ,2 ]
Zheng, Wei [1 ,2 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Guangdong Prov Key Lab Biomed Opt Imaging Technol, Shenzhen Key Lab Mol Imaging,Res Ctr Biomed Opt &, Shenzhen 518055, Peoples R China
[2] Chinese Acad Sci, CAS Key Lab Hlth Informat, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Image enhancement - Photons;
D O I
10.1364/PRJ.469231
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Artificial neural networks have shown great proficiency in transforming low-resolution microscopic images into high-resolution images. However, training data remains a challenge, as large-scale open-source databases of mi-croscopic images are rare, particularly 3D data. Moreover, the long training times and the need for expensive computational resources have become a burden to the research community. We introduced a deep-learning-based self-supervised volumetric imaging approach, which we termed "Self-Vision." The self-supervised approach re-quires no training data, apart from the input image itself. The lightweight network takes just minutes to train and has demonstrated resolution-enhancing power on par with or better than that of a number of recent microscopy -based models. Moreover, the high throughput power of the network enables large image inference with less post -processing, facilitating a large field-of-view (2.45 mm x 2.45 mm) using a home-built two-photon microscopy system. Self-Vision can recover images from fourfold undersampled inputs in the lateral and axial dimensions, dramatically reducing the acquisition time. Self-Vision facilitates the use of a deep neural network for 3D micros-copy imaging, easing the demanding process of image acquisition and network training for current resolution -enhancing networks. (c) 2022 Chinese Laser Press
引用
收藏
页码:1 / 11
页数:11
相关论文
共 30 条
[1]   Simultaneous multiplane imaging with reverberation two-photon microscopy [J].
Beaulieu, Devin R. ;
Davison, Ian G. ;
Kilic, Kivilcim ;
Bifano, Thomas G. ;
Mertz, Jerome .
NATURE METHODS, 2020, 17 (03) :283-+
[2]   Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes [J].
Chen, Jiji ;
Sasaki, Hideki ;
Lai, Hoyin ;
Su, Yijun ;
Liu, Jiamin ;
Wu, Yicong ;
Zhovmer, Alexander ;
Combs, Christian A. ;
Rey-Suarez, Ivan ;
Chang, Hung-Yu ;
Huang, Chi Chou ;
Li, Xuesong ;
Guo, Min ;
Nizambad, Srineil ;
Upadhyaya, Arpita ;
Lee, Shih-Jong J. ;
Lucas, Luciano A. G. ;
Shroff, Hari .
NATURE METHODS, 2021, 18 (06) :678-+
[3]   2-PHOTON LASER SCANNING FLUORESCENCE MICROSCOPY [J].
DENK, W ;
STRICKLER, JH ;
WEBB, WW .
SCIENCE, 1990, 248 (4951) :73-76
[4]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[5]   Deep learning-based point-scanning super-resolution imaging [J].
Fang, Linjing ;
Monroe, Fred ;
Novak, Sammy Weiser ;
Kirk, Lyndsey ;
Schiavon, Cara R. ;
Yu, Seungyoon B. ;
Zhang, Tong ;
Wu, Melissa ;
Kastner, Kyle ;
Latif, Alaa Abdel ;
Lin, Zijun ;
Shaw, Andrew ;
Kubota, Yoshiyuki ;
Mendenhall, John ;
Zhang, Zhao ;
Pekkurnaz, Gulcin ;
Harris, Kristen ;
Howard, Jeremy ;
Manor, Uri .
NATURE METHODS, 2021, 18 (04) :406-+
[6]   Accelerating multicolor spectroscopic single-molecule localization microscopy using deep learning [J].
Gaire, Sunil Kumar ;
Zhang, Yang ;
Li, Hongyu ;
Yu, Ray ;
Zhang, Hao F. ;
Ying, Leslie .
BIOMEDICAL OPTICS EXPRESS, 2020, 11 (05) :2705-2721
[7]  
He Y., SELFSUPERVISED DEEP
[8]   Recurrent neural network-based volumetric fluorescence microscopy [J].
Huang, Luzhe ;
Chen, Hanlong ;
Luo, Yilin ;
Rivenson, Yair ;
Ozcan, Aydogan .
LIGHT-SCIENCE & APPLICATIONS, 2021, 10 (01)
[9]   Deep learning extended depth-of-field microscope for fast and slide-free histology [J].
Jin, Lingbo ;
Tang, Yubo ;
Wu, Yicheng ;
Coole, Jackson B. ;
Tan, Melody T. ;
Zhao, Xuan ;
Badaoui, Hawraa ;
Robinson, Jacob T. ;
Williams, Michelle D. ;
Gillenwater, Ann M. ;
Richards-Kortum, Rebecca R. ;
Veeraraghavan, Ashok .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (52) :33051-33060
[10]   Deep learning enables structured illumination microscopy with low light levels and enhanced speed [J].
Jin, Luhong ;
Liu, Bei ;
Zhao, Fenqiang ;
Hahn, Stephen ;
Dong, Bowei ;
Song, Ruiyan ;
Elston, Timothy C. ;
Xu, Yingke ;
Hahn, Klaus M. .
NATURE COMMUNICATIONS, 2020, 11 (01)