Spin filtering and negative differential resistance in PAQR-ZGNR junctions

被引:2
作者
Zou, Xi-Lu [1 ,3 ]
Wang, Xue-Feng [1 ,2 ,3 ]
机构
[1] Soochow Univ, Inst theoret & Appl Phys, 1 Shizi St, Suzhou 215006, Peoples R China
[2] Suzhou Fusong Intelligent Technol Co Ltd, 415B-959 Jiayuan Rd, Suzhou 215131, Peoples R China
[3] Soochow Univ, Sch Phys Sci & Technol, Jiangsu Key Lab Thin Films, 1 Shizi St, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
PAQR molecule device; Spin; -valve; Negative differential resistance; Graphene-like zigzag nanoribbons; Symmetry of wave function; GIANT MAGNETORESISTANCE; MOLECULAR DEVICES; GRAPHENE; CONDUCTIVITY; TRANSPORT; ORDER; GATE;
D O I
10.1016/j.physe.2022.115512
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The spin transport of a Polyacene quinone radical (PAQR) molecule sandwiched between two ferromagnetic ZGNR electrodes with an even width number of 6 is studied employing the nonequilibrium Green's function method combined with the density functional theory (NEGF-DFT). Lateral symmetry mismatch of wave functions between PAQR and ZGNR may suppress all the transport channels except only one spin-down channel near the chemical potential in the linear regime. A half-metallic behavior with perfect spin filtering efficiency and strong negative differential resistance is expected. Under high bias voltage, the spin filtering efficiency changes from-100% to 90% when other transport channel is involved. Applying an external gate voltage, we can modulate greatly the conductance of the junction. These unique features are insensitive to the length of PAQR chain and suggest great application prospect for PAQR-ZGNR molecule devices.
引用
收藏
页数:7
相关论文
共 53 条
  • [31] Rajkumar M., 2022, J MOL GRAPH MODEL, V112
  • [32] On-surface synthesis of graphene nanoribbons with zigzag edge topology
    Ruffieux, Pascal
    Wang, Shiyong
    Yang, Bo
    Sanchez-Sanchez, Carlos
    Liu, Jia
    Dienel, Thomas
    Talirz, Leopold
    Shinde, Prashant
    Pignedoli, Carlo A.
    Passerone, Daniele
    Dumslaff, Tim
    Feng, Xinliang
    Muellen, Klaus
    Fasel, Roman
    [J]. NATURE, 2016, 531 (7595) : 489 - +
  • [33] Molecular Spintronics: Destructive Quantum Interference Controlled by a Gate
    Saraiva-Souza, Aldilene
    Smeu, Manuel
    Zhang, Lei
    Souza Filho, Antonio Gomes
    Guo, Hong
    Ratner, Mark A.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (42) : 15065 - 15071
  • [34] Schwierz F, 2010, NAT NANOTECHNOL, V5, P487, DOI [10.1038/NNANO.2010.89, 10.1038/nnano.2010.89]
  • [35] Sohn JI, 2002, MACROMOL CHEM PHYSIC, V203, P1135, DOI 10.1002/1521-3935(20020501)203:8<1135::AID-MACP1135>3.0.CO
  • [36] 2-F
  • [37] The SIESTA method for ab initio order-N materials simulation
    Soler, JM
    Artacho, E
    Gale, JD
    García, A
    Junquera, J
    Ordejón, P
    Sánchez-Portal, D
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (11) : 2745 - 2779
  • [38] Azulene-like molecular devices with high spin filtering, strong spin rectifying, and giant magnetoresistance effects
    Song, Yang
    Su, Yan
    Zhao, Peng
    Zhang, Guang-Ping
    Wang, Chuan-Kui
    Chen, Gang
    [J]. ORGANIC ELECTRONICS, 2018, 59 : 113 - 120
  • [39] Ab initio modeling of quantum transport properties of molecular electronic devices -: art. no. 245407
    Taylor, J
    Guo, H
    Wang, J
    [J]. PHYSICAL REVIEW B, 2001, 63 (24)
  • [40] Light-Controlled Conductance Switching of Ordered Metal-Molecule-Metal Devices
    van der Molen, Sense Jan
    Liao, Jianhui
    Kudernac, Tibor
    Agustsson, Jon S.
    Bernard, Laetitia
    Calame, Michel
    van Wees, Bart J.
    Feringa, Ben L.
    Schoenenberger, Christian
    [J]. NANO LETTERS, 2009, 9 (01) : 76 - 80