Schwarzian derivative and convexity of order α

被引:0
作者
Malik, Somya [1 ]
Ravichandran, V [1 ]
机构
[1] Natl Inst Technol, Dept Math, Tiruchirappalli 620015, Tamil Nadu, India
关键词
Univalence; Convexity; Starlikeness; Subordination; Schwarzian derivative; DIFFERENTIAL SUBORDINATIONS; STARLIKENESS; CRITERIA;
D O I
10.1007/s41478-022-00448-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For 0 <= alpha <1, a normalised analytic function f defined on the unit disc D is convex of order alpha if Re Q(CV) (f) > alpha, where Q(CV) (f) := 1 + zf ''(z)/f'(z). We find numerous sufficient conditions for the function f to be alpha convex function of order a in terms of Q(CV)(f) and Q(SD)(f) := z(2){f, z}, where {f, z} := (f ''(z)/f'(z))' - (f ''(z)/f'(z))(2)/2 is the Schwarzian derivative of f We obtain these conditions by using the theory of second order differential subordination.
引用
收藏
页码:201 / 228
页数:28
相关论文
共 24 条
  • [1] Subordination and Superordination on Schwarzian Derivatives
    Ali, Rosihan M.
    Ravichandran, V.
    Seenivasagan, N.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)
  • [2] Bohra N, 2017, STUD UNIV BABES-BOLY, V62, P197, DOI 10.24193/subbmath.2017.2.06
  • [3] Pre-Schwarzian and Schwarzian derivatives of logharmonic mappings
    Bravo, V.
    Hernandez, R.
    Ponnusamy, S.
    Venegas, O.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2022, 199 (04): : 733 - 754
  • [4] Sharp Bounds on the Higher Order Schwarzian Derivatives for Janowski Classes
    Cho, Nak Eun
    Kumar, Virendra
    Ravichandran, V.
    [J]. SYMMETRY-BASEL, 2018, 10 (08):
  • [5] Differential subordination of harmonic mean
    Cho, Nak Eun
    Lecko, Adam
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2015, 15 (03) : 427 - 437
  • [6] DIFFERENTIAL SUBORDINATION OF A HARMONIC MEAN TO A LINEAR FUNCTION
    Chojnacka, Oliwia
    Lecko, Adam
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (05) : 1475 - 1484
  • [7] SCHWARZIAN DERIVATIVES OF CONVEX MAPPINGS
    Chuaqui, Martin
    Duren, Peter
    Osgood, Brad
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (02) : 449 - 460
  • [8] On differential subordinations related to convex functions
    Kim, YC
    Lecko, A
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 235 (01) : 130 - 141
  • [9] Kwon O, 2017, COMMUN KOREAN MATH S, V32, P93, DOI 10.4134/CKMS.c160063
  • [10] Miller S.S., 2000, DIFFERENTIAL SUBORDI, DOI DOI 10.1201/9781482289817