Testing Hypotheses on the Innovations Distribution in Semi-Parametric Conditional Volatility Models*

被引:2
|
作者
Francq, Christian
Zakoian, Jean-Michel [1 ]
机构
[1] CREST, 5 Ave Henri Le Chatelier, F-91120 Palaiseau, France
关键词
asymmetries in financial returns; GARCH innovations; mean-median equality test; quantile testing; testing symmetry of quantiles; value-at-risk; SPECIFICATION TESTS; SQUARED RESIDUALS; EMPIRICAL PROCESS; VARIANCE;
D O I
10.1093/jjfinec/nbac011
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Testing symmetry or quantile assumptions on the innovations distribution can be of invaluable help to improve or simplify the statistical procedures designed for GARCH-type models. In particular, evaluation of the conditional value-at-risk (VaR) or construction of confidence intervals for predictions requires estimating quantiles of the innovations distribution. We propose tests of different hypotheses: adequacy of a set of parametric quantiles, mean-median equality, symmetry of extreme quantiles, and zero-median in presence of a conditional mean. The tests rely on the asymptotic distribution of the empirical distribution function of the residuals. They are generally model-free (though not estimation-free) and thus are simple to implement. Efficiency comparisons are made using the Bahadur approach. Numerical studies based on simulated and real data are provided to illustrate the usefulness of the proposed tests for risk management or statistical purposes.
引用
收藏
页码:1443 / 1482
页数:40
相关论文
共 50 条
  • [1] Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility
    Zikes, Filip
    Barunik, Jozef
    JOURNAL OF FINANCIAL ECONOMETRICS, 2016, 14 (01) : 185 - 226
  • [2] Adaptiveness of the empirical distribution of residuals in semi-parametric conditional location scale models
    Francq, Christian
    Zakoian, Jean-Michel
    BERNOULLI, 2022, 28 (01) : 548 - 578
  • [3] Specification testing in semi-parametric transformation models
    Kloodt, Nick
    Neumeyer, Natalie
    Van Keilegom, Ingrid
    TEST, 2021, 30 (04) : 980 - 1003
  • [4] Specification testing in semi-parametric transformation models
    Nick Kloodt
    Natalie Neumeyer
    Ingrid Van Keilegom
    TEST, 2021, 30 : 980 - 1003
  • [5] Multi-resolution properties of semi-parametric volatility models
    Capobianco, E
    NONLINEAR ESTIMATION AND CLASSIFICATION, 2003, 171 : 273 - 284
  • [6] Semi-Parametric Forecasting of Realized Volatility
    Becker, Ralf
    Clements, Adam E.
    Hurn, Stan
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2011, 15 (03):
  • [7] Semi-parametric comparison of stochastic volatility models using realized measures
    Corradi, Valentina
    Distaso, Walter
    REVIEW OF ECONOMIC STUDIES, 2006, 73 (03): : 635 - 667
  • [8] Semi-parametric estimation for conditional independence multivariate finite mixture models
    Chauveau, Didier
    Hunter, David R.
    Levine, Michael
    STATISTICS SURVEYS, 2015, 9 : 1 - 31
  • [9] A Multi-Covariate Semi-Parametric Conditional Volatility Model Using Probabilistic Fuzzy Systems
    Almeida, Rui Jorge
    Basturk, Nalan
    Kaymak, Uzay
    Milea, Viorel
    2012 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING & ECONOMICS (CIFER), 2012, : 3 - 10
  • [10] Semi-parametric estimation for ARCH models
    Alzghool, Raed
    Al-Zubi, Loai M.
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (01) : 367 - 373