On the 2-class number of some real cyclic quartic number fields I

被引:0
作者
Azizi, Abdelmalek [1 ]
Tamimi, Mohammed [1 ]
Zekhnini, Abdelkader [1 ]
机构
[1] Mohammed Premier Univ, Sci Fac, Math Dept, Oujda, Morocco
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2024年 / 30卷 / 01期
关键词
Real cyclic quartic number field; 2-Rank; 2-Class group; Quadratic extension; Class number; GENERA;
D O I
10.1007/s40590-023-00589-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the real cyclic quartic number field K=Q(n epsilon 0l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}=\mathbb {Q}(\sqrt{n\varepsilon _{0}\sqrt{\ell }})$$\end{document}, where l=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell =2$$\end{document} or l equivalent to 1(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \equiv 1\pmod 4$$\end{document} is a prime, n is a square-free positive integer relatively prime to l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} and epsilon 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon _{0}$$\end{document} the fundamental unit of its quadratic subfield k=Q(l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=\mathbb {Q}(\sqrt{\ell })$$\end{document}. In this article, assuming the 2-class group CK,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C}_{\mathbb {K},2}$$\end{document} of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document} is nontrivial and cyclic, we prove that the order of CK,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{C}_{\mathbb {K},2}$$\end{document} is exactly 2.
引用
收藏
页数:26
相关论文
共 14 条
  • [1] Azizi A., 2010, Int. J. Algebra, V4, P1127
  • [2] The 2-rank of the class group of some real cyclic quartic number fields II
    AZIZI, Abdelmalek
    TAMIMI, Mohamed
    ZEKHNINI, Abdelkader
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (03) : 1241 - 1269
  • [3] The 2-rank of the class group of some real cyclic quartic number fields
    Azizi, Abdelmalek
    Tamimi, Mohammed
    Zekhnini, Abdelkader
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2021, 131 (01):
  • [4] BAUER H, 1971, J REINE ANGEW MATH, V248, P42
  • [5] 2-CLASS GROUP OF BIQUADRATIC FIELDS .2.
    BROWN, E
    PARRY, CJ
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1978, 78 (01) : 11 - 26
  • [6] BROWN E, 1977, J REINE ANGEW MATH, V295, P61
  • [7] Gauss C.F., 1965, Untersuchungen uber hohere Arithmetik
  • [8] GOLD R, 1975, P AM MATH SOC, V47, P25
  • [9] GENERA IN NORMAL EXTENSIONS
    GOLD, R
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1976, 63 (02) : 397 - 400
  • [10] Hasse H, 1930, J REINE ANGEW MATH, V162, P134