Confinement in Dual-Chain-Locked DNA Origami Nanocages Programs Marker-Responsive Delivery of CRISPR/Cas9 Ribonucleoproteins

被引:15
作者
Xu, Ziqi [1 ]
Dong, Yuxiang [1 ]
Ma, Ningning [1 ]
Zhu, Xurong [1 ]
Zhang, Xue [1 ]
Yin, Hao [1 ]
Chen, Shiqing [1 ]
Zhu, Jun-Jie [1 ]
Tian, Ye [1 ]
Min, Qianhao [1 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Sch Chem & Chem Engn, State Key Lab Analyt Chem Life Sci, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Biomolecules - Disease control - Genes - Tumors;
D O I
10.1021/jacs.3c04074
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Delivery of CRISPR/Cas9 ribonucleoproteins (RNPs) offers a powerful tool for therapeutic genome editing. However, precise manipulation of CRISPR/Cas9 RNPs to switch the machinery on and off according to diverse disease microenvironments remains challenging. Here, we present dual-chain-locked DNA origami nanocages (DL-DONCs) that can confine Cas9 RNPs in the inner cavity for efficient cargo delivery and dual-marker-responsive genome editing in the specified pathological states. By engineering of ATP or miRNA-21-responsive dsDNAs as chain locks on the DONCs, the permeability of nanocages and accessibility of encapsulated Cas9 RNPs can be finely regulated. The resulting DL-DONCs enabled steric protection of bioactive Cas9 RNPs from premature release and deactivation during transportation while dismounting the dual chain locks in response to molecular triggers after internalization into tumor cells, facilitating the escape of Cas9 RNPs from the confinement for gene editing. Due to the dual-marker-dominated uncaging mechanism, the gene editing efficiency could be exclusively determined by the combined level of ATP and miRNA-21 in the target cellular environment. By targeting the tumor-associated PLK-1 gene, the DL-DONCs-enveloped Cas9 RNPs have demonstrated superior inhibitory effects on the proliferation of tumor cells in vitro and in vivo. The developed DL-DONCs provide a custom-made platform for the precise manipulation of Cas9 RNPs, which can be potentially applied to on-demand gene editing for classified therapy in response to arbitrary disease-associated biomolecules.
引用
收藏
页码:26557 / 26568
页数:12
相关论文
共 38 条
[1]   Construction of an optically controllable CRISPR-Cas9 system using a DNA origami nanostructure [J].
Abe, Katsuhiko ;
Sugiyama, Hiroshi ;
Endo, Masayuki .
CHEMICAL COMMUNICATIONS, 2021, 57 (45) :5594-5596
[2]   Rationally designed nanoparticle delivery of Cas9 ribonucleoprotein for effective gene editing [J].
Chae, Se-Youl ;
Jeong, Euihwan ;
Kang, Seounghun ;
Yim, Yeajee ;
Kim, Jin-Soo ;
Min, Dal-Hee .
JOURNAL OF CONTROLLED RELEASE, 2022, 345 :108-119
[3]   A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing [J].
Chen, Guojun ;
Abdeen, Amr A. ;
Wang, Yuyuan ;
Shahi, Pawan K. ;
Robertson, Samantha ;
Xie, Ruosen ;
Suzuki, Masatoshi ;
Pattnaik, Bikash R. ;
Saha, Krishanu ;
Gong, Shaoqin .
NATURE NANOTECHNOLOGY, 2019, 14 (10) :974-+
[4]   Plk1 overexpression induces chromosomal instability and suppresses tumor development [J].
de Carcer, Guillermo ;
Venkateswaran, Sharavan Vishaan ;
Salgueiro, Lorena ;
El Bakkali, Aicha ;
Somogyi, Kalman ;
Rowald, Konstantina ;
Montanes, Pablo ;
Sanclemente, Manuel ;
Escobar, Beatriz ;
de Martino, Alba ;
McGranahan, Nicholas ;
Malumbres, Marcos ;
Sotillo, Rocio .
NATURE COMMUNICATIONS, 2018, 9
[5]   A non-cationic nucleic acid nanogel for the delivery of the CRISPR/Cas9 gene editing tool [J].
Ding, Fei ;
Huang, Xiangang ;
Gao, Xihui ;
Xie, Miao ;
Pan, Gaifang ;
Li, Qifeng ;
Song, Jie ;
Zhu, Xinyuan ;
Zhang, Chuan .
NANOSCALE, 2019, 11 (37) :17211-17215
[6]   Size-selective molecular recognition based on a confined DNA molecular sieve using cavity-tunable framework nucleic acids [J].
Fu, Xiaoyi ;
Ke, Guoliang ;
Peng, Fangqi ;
Hu, Xue ;
Li, Jiaqi ;
Shi, Yuyan ;
Kong, Gezhi ;
Zhang, Xiao-Bing ;
Tan, Weihong .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]   Tailoring nanocarriers for intracellular protein delivery [J].
Gu, Zhen ;
Biswas, Anuradha ;
Zhao, Muxun ;
Tang, Yi .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (07) :3638-3655
[8]   In vivo delivery of CRISPR-Cas9 using lipid nanoparticles enables antithrombin gene editing for sustainable hemophilia A and B therapy [J].
Han, Jeong Pil ;
Kim, MinJeong ;
Choi, Beom Seok ;
Lee, Jeong Hyeon ;
Lee, Geon Seong ;
Jeong, Michaela ;
Lee, Yeji ;
Kim, Eun-Ah ;
Oh, Hye-Kyung ;
Go, Nanyeong ;
Lee, Hyerim ;
Lee, Kyu Jun ;
Kim, Un Gi ;
Lee, Jae Young ;
Kim, Seokjoong ;
Chang, Jun ;
Lee, Hyukjin ;
Song, Dong Woo ;
Yeom, Su Cheong .
SCIENCE ADVANCES, 2022, 8 (03)
[9]   DNA Origami-Based Single-Molecule CRISPR Machines for Spatially Resolved Searching [J].
Hao, Yaya ;
Li, Mingqiang ;
Zhang, Qian ;
Shi, Jiye ;
Li, Jiang ;
Li, Qian ;
Fan, Chunhai ;
Wang, Fei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (34)
[10]   Rationally Programming Nanomaterials with DNA for Biomedical Applications [J].
He, Liangcan ;
Mu, Jing ;
Gang, Oleg ;
Chen, Xiaoyuan .
ADVANCED SCIENCE, 2021, 8 (08)