MOFs derived N doped CuNix@C dual metallic core-shell electrocatalysts for CO2 electrocatalytic reduction

被引:3
作者
Jin, Peng [1 ,3 ]
Wang, Qian [2 ]
Gu, Xiaohu [1 ]
Huang, Lei [2 ]
Qin, Wen [2 ]
Chong, Yiting [3 ]
Pruksawan, Sirawit [3 ]
Zhang, Shouren [4 ]
Wang, Fuke [3 ]
Lin, Xiongchao [2 ]
机构
[1] China Pingmei Shenma Grp, State Key Lab Coking Coal Resources Green Exploita, Pingdingshan 467000, Peoples R China
[2] China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
[3] ASTAR, Inst Mat Res & Engn IMRE, 2 Fusionopolis Way,Innovis 08-03, Singapore 138634, Singapore
[4] Huanghe Sci & Technol Coll, Inst Nanostruct Funct Mat, Zhengzhou 450006, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2RR; Alloy; Cu-based catalyst; Core-shell structure; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; ELECTROREDUCTION; HYDROCARBONS; OXIDATION; COVERAGE; ETHYLENE; STRAIN;
D O I
10.1016/j.ijoes.2023.100427
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electroreduction CO2 to produce high-value-added multi-carbon products is an ideal way to mitigate the greenhouse effect. However, designing efficient, inexpensive electrocatalysts is a technical bottleneck. In this work, a series of CuNix @N-C core-shell catalysts were prepared by high-temperature carbonization method using MOF as a precursor. The selectivity of the multi-carbon products was optimized by adjusting the Cu and Ni metal ratio in the precursor. Besides, the outer layer of graphite promoted the adsorption capacity of CO2 and prevented the agglomeration of metal particles. As a result, CuNi2 @N-C exhibited superior electrocatalytic performance at - 0.97 V vs. RHE. The Faradaic efficiencies of ethanol and acetone were 27.38% and 25.96%, respectively. Moreover, the CuNi2 @N-C could operate stably for 10 h even at 200 mA center dot cm(-2). This work provides an effective strategy for designing high performance Cu-based electrocatalysts.
引用
收藏
页数:8
相关论文
共 47 条
[1]   Poly-Amide Modified Copper Foam Electrodes for Enhanced Electrochemical Reduction of Carbon Dioxide [J].
Ahn, Sunyhik ;
Klyukin, Konstantin ;
Wakeham, Russell J. ;
Rudd, Jennifer A. ;
Lewis, Aled R. ;
Alexander, Shirin ;
Carla, Francesco ;
Alexandrov, Vitaly ;
Andreoli, Enrico .
ACS CATALYSIS, 2018, 8 (05) :4132-4142
[2]   Electrochemical CO2 Reduction: A Classification Problem [J].
Bagger, Alexander ;
Ju, Wen ;
Sofia Varela, Ana ;
Strasser, Peter ;
Rossmeisl, Jan .
CHEMPHYSCHEM, 2017, 18 (22) :3266-3273
[3]   MOF derived porous carbon-Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent [J].
Banerjee, Abhik ;
Gokhale, Rohan ;
Bhatnagar, Sumit ;
Jog, Jyoti ;
Bhardwaj, Monika ;
Lefez, Benoit ;
Hannoyer, Beatrice ;
Ogale, Satishchandra .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (37) :19694-19699
[4]   Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide [J].
Dai, Lei ;
Qin, Qing ;
Wang, Pei ;
Zhao, Xiaojing ;
Hu, Chengyi ;
Liu, Pengxin ;
Qin, Ruixuan ;
Chen, Mei ;
Ou, Daohui ;
Xu, Chaofa ;
Mo, Shiguang ;
Wu, Binghui ;
Fu, Gang ;
Zhang, Peng ;
Zheng, Nanfeng .
SCIENCE ADVANCES, 2017, 3 (09)
[5]   Boosting Electrochemical CO2 Reduction on Metal-Organic Frameworks via Ligand Doping [J].
Dou, Shuo ;
Song, Jiajia ;
Xi, Shibo ;
Du, Yonghua ;
Wang, Jiong ;
Huang, Zhen-Feng ;
Xu, Zhichuan J. ;
Wang, Xin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (12) :4041-4045
[6]   Defects do Catalysis: CO Monolayer Oxidation and Oxygen Reduction Reaction on Hollow PtNi/C Nanoparticles [J].
Dubau, Laetitia ;
Nelayah, Jaysen ;
Moldovan, Simona ;
Ersen, Ovidiu ;
Bordet, Pierre ;
Drnec, Jakub ;
Asset, Tristan ;
Chattot, Raphael ;
Maillard, Frederic .
ACS CATALYSIS, 2016, 6 (07) :4673-4684
[7]   Heterogeneous Single-Atom Catalyst for Visible-Light-Driven High-Turnover CO2 Reduction: The Role of Electron Transfer [J].
Gao, Chao ;
Chen, Shuangming ;
Wang, Ying ;
Wang, Jiawen ;
Zheng, Xusheng ;
Zhu, Junfa ;
Song, Li ;
Zhang, Wenkai ;
Xiong, Yujie .
ADVANCED MATERIALS, 2018, 30 (13)
[8]   Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C2 Products [J].
Garza, Alejandro J. ;
Bell, Alexis T. ;
Head-Gordon, Martin .
ACS CATALYSIS, 2018, 8 (02) :1490-1499
[9]   A novel strategy of transition-metal doping to engineer absorption of carbon dots for near-infrared photothermal/photodynamic therapies [J].
Guo, Xiao-Lu ;
Ding, Zhao-Yang ;
Deng, Si-Min ;
Wen, Chang-Chun ;
Shen, Xing-Can ;
Jiang, Bang-Ping ;
Liang, Hong .
CARBON, 2018, 134 :519-530
[10]   Electrochemical Reduction of Carbon Dioxide to Syngas and Formate at Dendritic Copper-Indium Electrocatalysts [J].
Hoffman, Zachary B. ;
Gray, Tristan S. ;
Moraveck, Kasey B. ;
Gunnoe, T. Brent ;
Zangari, Giovanni .
ACS CATALYSIS, 2017, 7 (08) :5381-5390