DENSELY CONNECTED SWIN-UNET FOR MULTISCALE INFORMATION AGGREGATION IN MEDICAL IMAGE SEGMENTATION

被引:5
作者
Wang, Ziyang [1 ]
Su, Meiwen [2 ]
Zheng, Jian-Qing [3 ]
Liu, Yang [4 ]
机构
[1] Univ Oxford, Dept Comp Sci, Oxford, England
[2] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Peoples R China
[3] Univ Oxford, Kennedy Inst Rheumatol, Oxford, England
[4] Univ Plymouth, Dept Comp Sci, Plymouth, Devon, England
来源
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2023年
关键词
Semantic Segmentation; UNet; Vision Transformer;
D O I
10.1109/ICIP49359.2023.10222451
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image semantic segmentation is a dense prediction task in computer vision that is dominated by deep learning techniques in recent years. UNet, which is a symmetric encoder-decoder end-to-end Convolutional Neural Network (CNN) with skip connections, has shown promising performance. Aiming to process the multiscale feature information efficiently, we propose a new Densely Connected Swin-UNet (DCS-UNet) with multiscale information aggregation for medical image segmentation. Firstly, inspired by Swin-Transformer to model long-range dependencies via shift-window-based self-attention, this work proposes the use of fully ViT-based network blocks with a shift-window approach, resulting in a purely self-attention-based U-shape segmentation network. The relevant layers including feature sampling and image tokenization are re-designed to align with the ViT fashion. Secondly, a full-scale deep supervision scheme is developed to process the aggregated feature map with various resolutions generated by different levels of decoders. Thirdly, dense skip connections are proposed that allow the semantic feature information to be thoroughly transferred from different levels of encoders to lower level decoders. Our proposed method is validated on a public benchmark MRI Cardiac segmentation data set with comprehensive validation metrics showing competitive performance against other variant encoder-decoder networks. The code is available at https://github.com/ziyangwang007/VIT4UNet.
引用
收藏
页码:940 / 944
页数:5
相关论文
共 50 条
  • [31] A Comprehensive Exploration of L-UNet Approach: Revolutionizing Medical Image Segmentation
    Alafer, Feras
    Hameed Siddiqi, Muhammad
    Sheraz Khan, Muhammad
    Ahmad, Irshad
    Alhujaili, Sultan
    Alrowaili, Ziyad
    Saad Alshabibi, Abdulaziz
    IEEE ACCESS, 2024, 12 : 140769 - 140791
  • [32] Dynamic neighbourhood-enhanced UNet with interwoven fusion for medical image segmentation
    Wan, Liming
    Song, Lin
    Zhou, Ying
    Kang, Chenrui
    Zheng, Shijian
    Chen, Guo
    VISUAL COMPUTER, 2025,
  • [33] EPolar-UNet: An edge-attending polar UNet for automatic medical image segmentation with small datasets
    Ling, Yating
    Wang, Yuling
    Liu, Qian
    Yu, Jie
    Xu, Lei
    Zhang, Xiaoqian
    Liang, Ping
    Kong, Dexing
    MEDICAL PHYSICS, 2024, 51 (03) : 1702 - 1713
  • [34] ERDUnet: An Efficient Residual Double-Coding Unet for Medical Image Segmentation
    Li, Hao
    Zhai, Di-Hua
    Xia, Yuanqing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (04) : 2083 - 2096
  • [35] TMU: Transmission-Enhanced Mamba-UNet for Medical Image Segmentation
    Yang, Xiongfeng
    Luo, Ziyang
    Wu, Yanlin
    Xie, Xueshuo
    Nan, Li
    Li, Tao
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT X, ICIC 2024, 2024, 14871 : 428 - 438
  • [36] Attention UNet3+: a full-scale connected attention-aware UNet for CT image segmentation of liver
    Chen, Congping
    Shi, Jing
    Xu, Zhiwei
    Wang, Zhihan
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (06) : 63012
  • [37] A swin-transformer-based network with inductive bias ability for medical image segmentation
    Gao, Yan
    Xu, Huan
    Liu, Quanle
    Bie, Mei
    Che, Xiangjiu
    APPLIED INTELLIGENCE, 2025, 55 (02)
  • [38] DMSA-UNet: Dual Multi-Scale Attention makes UNet more strong for medical image segmentation
    Li, Xiang
    Fu, Chong
    Wang, Qun
    Zhang, Wenchao
    Sham, Chiu-Wing
    Chen, Junxin
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [39] MA-Unet:An improved version of Unet based on multi-scale and attention mechanism for medical image segmentation
    Cai, Yutong
    Wang, Yong
    THIRD INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION; NETWORK AND COMPUTER TECHNOLOGY (ECNCT 2021), 2022, 12167
  • [40] MD-UNet: a medical image segmentation network based on mixed depthwise convolution
    Liu, Yun
    Yao, Shuanglong
    Wang, Xing
    Chen, Ji
    Li, Xiaole
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (04) : 1201 - 1212