Identification and risk stratification of coronary disease by artificial intelligence-enabled ECG

被引:9
作者
Awasthi, Samir [1 ,2 ]
Sachdeva, Nikhil [1 ,2 ]
Gupta, Yash [1 ,2 ]
Anto, Ausath G. [1 ,2 ]
Asfahan, Shahir [1 ,2 ]
Abbou, Ruben [1 ,2 ]
Bade, Sairam [1 ,2 ]
Sood, Sanyam [1 ,2 ]
Hegstrom, Lars [1 ,2 ]
Vellanki, Nirupama [2 ,3 ]
Alger, Heather M. [1 ,2 ]
Babu, Melwin [1 ,2 ]
Medina-Inojosa, Jose R. [4 ]
Mccully, Robert B. [4 ]
Lerman, Amir [4 ]
Stampehl, Mark [5 ]
Barve, Rakesh [1 ,2 ]
Attia, Zachi I. [4 ]
Friedman, Paul A. [4 ]
Soundararajan, Venky [1 ,2 ]
Lopez-Jimenez, Francisco [4 ]
机构
[1] Anumana Inc, One Main St, Cambridge, MA USA
[2] nference Inc, One Main St, Cambridge, MA USA
[3] Beth Israel Deaconess Med Ctr, Boston, MA USA
[4] Mayo Clin, Rochester, MN 55905 USA
[5] Novartis Pharmaceut, E Hanover, NJ USA
关键词
Artificial intelligence; ECG-AI; Coronary artery disease; Atherosclerotic cardiovascular disease; Cardiovascular risk;
D O I
10.1016/j.eclinm.2023.102259
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death worldwide, driven primarily by coronary artery disease (CAD). ASCVD risk estimators such as the pooled cohort equations (PCE) facilitate risk stratification and primary prevention of ASCVD but their accuracy is still suboptimal. Methods Using deep electronic health record data from 7,116,209 patients seen at 70+ hospitals and clinics across 5 states in the USA, we developed an artificial intelligence-based electrocardiogram analysis tool (ECG-AI) to detect CAD and assessed the additive value of ECG-AI-based ASCVD risk stratification to the PCE. We created independent ECG-AI models using separate neural networks including subjects without known history of ASCVD, to identify coronary artery calcium (CAC) score >= 300 Agatston units by computed tomography, obstructive CAD by angiography or procedural intervention, and regional left ventricular akinesis in >= 1 segment by echocardiogram, as a reflection of possible prior myocardial infarction (MI). These were used to assess the utility of ECG-AI-based ASCVD risk stratification in a retrospective observational study consisting of patients with PCE scores and no prior ASCVD. The study period covered all available digitized EHR data, with the first available ECG in 1987 and the last in February 2023. Findings ECG-AI for identifying CAC >= 300, obstructive CAD, and regional akinesis achieved area under the receiver operating characteristic (AUROC) values of 0.88, 0.85, and 0.94, respectively. An ensembled ECG-AI identified 3, 5, and 10-year risk for acute coronary events and mortality independently and additively to PCE. Hazard ratios for acute coronary events over 3-years in patients without ASCVD that tested positive on 1, 2, or 3 versus 0 disease-specific ECG-AI models at cohort entry were 2.41 (2.14-2.71), 4.23 (3.74-4.78), and 11.75 (10.2-13.52), respectively. Similar stratification was observed in cohorts stratified by PCE or age. Interpretation ECG-AI has potential to address unmet need for accessible risk stratification in patients in whom PCE under, over, or insufficiently estimates ASCVD risk, and in whom risk assessment over time periods shorter than 10 years is desired.
引用
收藏
页数:14
相关论文
共 22 条
[1]   Effect of No-Charge Coronary Artery Calcium Scoring on Cardiovascular Prevention [J].
Al-Kindi, Sadeer ;
Tashtish, Nour ;
Rashid, Imran ;
Gupta, Amit ;
AnsariGilani, Kianoush ;
Gilkeson, Robert ;
Cainzos-Achirica, Miguel ;
Nasir, Khurram ;
Pronovost, Peter ;
Simon, Daniel I. ;
Rajagopalan, Sanjay .
AMERICAN JOURNAL OF CARDIOLOGY, 2022, 174 :40-47
[2]  
Arnett DK, 2019, CIRCULATION, V140, pE596, DOI [10.1161/CIR.0000000000000678, 10.1016/j.jacc.2019.03.009, 10.1161/CIR.0000000000000677, 10.1016/j.jacc.2019.03.010]
[3]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[4]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[5]   Modeling the Recommended Age for Initiating Coronary Artery Calcium Testing Among At-Risk Young Adults [J].
Dzaye, Omar ;
Razavi, Alexander C. ;
Dardari, Zeina A. ;
Shaw, Leslee J. ;
Berman, Daniel S. ;
Budoff, Matthew J. ;
Miedema, Michael D. ;
Nasir, Khurram ;
Rozanski, Alan ;
Rumberger, John A. ;
Orringer, Carl E. ;
Smith, Sidney C. Jr Jr ;
Blankstein, Ron ;
Whelton, Seamus P. ;
Mortensen, Martin Bodtker ;
Blaha, Michael J. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 78 (16) :1573-1583
[6]   2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines [J].
Goff, David C., Jr. ;
Lloyd-Jones, Donald M. ;
Bennett, Glen ;
Coady, Sean ;
D'Agostino, Ralph B. ;
Gibbons, Raymond ;
Greenland, Philip ;
Lackland, Daniel T. ;
Levy, Daniel ;
O'Donnell, Christopher J. ;
Robinson, Jennifer G. ;
Schwartz, J. Sanford ;
Shero, Susan T. ;
Smith, Sidney C., Jr. ;
Sorlie, Paul ;
Stone, Neil J. ;
Wilson, Peter W. F. .
CIRCULATION, 2014, 129 (25) :S49-S73
[7]   Insurance Payers Should Cover Selective Coronary Artery Calcium Testing in Intermediate Risk Primary Prevention Patients [J].
Greenland, Philip ;
Maron, David J. ;
Budoff, Matthew J. .
CIRCULATION, 2022, 146 (08) :585-586
[8]   Artificial Intelligence-Enabled ECG Algorithm for the Prediction of Coronary Artery Calcification [J].
Han, Changho ;
Kang, Ki-Woon ;
Kim, Tae Young ;
Uhm, Jae-Sun ;
Park, Je-Wook ;
Jung, In Hyun ;
Kim, Minkwan ;
Bae, SungA ;
Lim, Hong-Seok ;
Yoon, Dukyong .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
[9]   An Artificial Intelligence-Enabled ECG Algorithm for the Prediction and Localization of Angiography-Proven Coronary Artery Disease [J].
Huang, Pang-Shuo ;
Tseng, Yu-Heng ;
Tsai, Chin-Feng ;
Chen, Jien-Jiun ;
Yang, Shao-Chi ;
Chiu, Fu-Chun ;
Chen, Zheng-Wei ;
Hwang, Juey-Jen ;
Chuang, Eric Y. ;
Wang, Yi-Chih ;
Tsai, Chia-Ti .
BIOMEDICINES, 2022, 10 (02)
[10]   Performance of the Pooled Cohort Equations to Estimate Atherosclerotic Cardiovascular Disease Risk by Body Mass Index [J].
Khera, Rohan ;
Pandey, Ambarish ;
Ayers, Colby R. ;
Carnethon, Mercedes R. ;
Greenland, Philip ;
Ndumele, Chiadi E. ;
Nambi, Vijay ;
Seliger, Stephen L. ;
Chaves, Paulo H. M. ;
Safford, Monika M. ;
Cushman, Mary ;
Xanthakis, Vanessa ;
Ramachandran, Vasan S. ;
Mentz, Robert J. ;
Correa, Adolfo ;
Lloyd-Jones, Donald M. ;
Berry, Jarett D. ;
de Lemos, James A. ;
Neeland, Ian J. .
JAMA NETWORK OPEN, 2020, 3 (10)