Construction of multiple channels for electron transport in In2S3/In2O3/ rGO heterojunctions to boost photocatalytic CO2 conversion to C2+hydrocarbons

被引:12
作者
Zhang, Yipin [1 ]
Li, Wenjuan [1 ]
Tian, Fu [1 ]
Cai, Na [1 ]
Guan, Qinhui [1 ]
Zhang, Dapeng [1 ]
Ran, Weiguang [1 ]
Li, Na [1 ]
Yan, Tingjiang [1 ,2 ]
机构
[1] Qufu Normal Univ, Sch Chem & Chem Engn, Key Lab Catalyt Convers & Clean Energy Univ Shando, Qufu 273165, Peoples R China
[2] Shaanxi Univ Sci & Technol, Coll Chem & Chem Engn, Xian 710021, Peoples R China
基金
中国国家自然科学基金;
关键词
rGO; Electron transport; CO2; reduction; C2+hydrocarbons; HYDROGENATION; REDUCTION; CATALYSTS;
D O I
10.1016/j.cej.2023.147129
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Constructing hybrids to accelerate the charge carrier separation and electron transport, and then decrease the electrons loss should be effective in the CO2 conversion into C2+ hydrocarbon fuels. In2S3/In2O3 (IS/IO) heterojunctions were in situ formed and decorated on reduced graphene oxide (rGO) sheets, realizing the construction of multiple channels for electron transport. Upon illumination, IS/IO-rGO nanocomposites not only significantly improved the conversion of CO2 to CO and CH4, but also allowed the formation of C2+ hydrocarbons (C2H4, C2H6, C3H6 and C3H8) under atmospheric conditions, and the total selectivity of C2+ even reached about 35 %. The synergistic effect of the heterojunctions and rGO, with multiple channels for electron transport, accelerates the charge carrier separation/transfer and increases the applied efficiency of electrons, availing more electrons accumulated on the surface of the composite. Eventually, there are sufficient electrons to participate in the reduction of CO2 to CO, CH4 and C2+ hydrocarbons.
引用
收藏
页数:11
相关论文
共 52 条
[1]  
Alhammadi S., 2023, Chemosphere, V335
[2]  
Alsulamei A., 2022, Optical Materials: X, V15
[3]   Plasmonic Au nanoparticles anchored 2D WS2@RGO for high-performance photoelectrochemical nitrogen reduction to ammonia [J].
Bharath, G. ;
Liu, Chao ;
Banat, Fawzi ;
Kumar, Anuj ;
Hai, Abdul ;
Nadda, Ashok Kumar ;
Gupta, Vijai Kumar ;
Abu Haija, Mohammad ;
Balamurugan, Jayaraman .
CHEMICAL ENGINEERING JOURNAL, 2023, 465
[4]   Wurtzite CuGaS2 with an In-Situ-Formed CuO Layer Photocatalyzes CO2 Conversion to Ethylene with High Selectivity [J].
Chakraborty, Subhajit ;
Das, Risov ;
Riyaz, Mohd ;
Das, Kousik ;
Singh, Ashutosh Kumar ;
Bagchi, Debabrata ;
Vinod, Chathakudath P. ;
Peter, Sebastian C. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (09)
[5]   Current trends on In2O3 based heterojunction photocatalytic systems in photocatalytic application [J].
Chang, Pei ;
Wang, Yuhua ;
Wang, Yitong ;
Zhu, Yangyang .
CHEMICAL ENGINEERING JOURNAL, 2022, 450
[6]   Alumina-Supported CoFe Alloy Catalysts Derived from Layered-Double-Hydroxide Nanosheets for Efficient Photothermal CO2 Hydrogenation to Hydrocarbons [J].
Chen, Guangbo ;
Gao, Rui ;
Zhao, Yufei ;
Li, Zhenhua ;
Waterhouse, Geoffrey I. N. ;
Shi, Run ;
Zhao, Jiaqing ;
Zhang, Mengtao ;
Shang, Lu ;
Sheng, Guiyang ;
Zhang, Xiangping ;
Wen, Xiaodong ;
Wu, Li-Zhu ;
Tung, Chen-Ho ;
Zhang, Tierui .
ADVANCED MATERIALS, 2018, 30 (03)
[7]   Construction of Porous Tubular In2S3@In2O3 with Plasma Treatment-Derived Oxygen Vacancies for Efficient Photocatalytic H2O2 Production in Pure Water Via Two-Electron Reduction [J].
Chen, Xi ;
Zhang, Wenwen ;
Zhang, Lixiang ;
Feng, Luping ;
Zhang, Chunxian ;
Jiang, Jie ;
Wang, Hua .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (22) :25868-25878
[8]   Microwave-assisted hydrothermal synthesis of marigold-like ZnIn2S4 microspheres and their visible light photocatalytic activity [J].
Chen, Zhixin ;
Li, Danzhen ;
Xiao, Guangcan ;
He, Yunhui ;
Xu, Yi-Jun .
JOURNAL OF SOLID STATE CHEMISTRY, 2012, 186 :247-254
[9]   Visible light induced selective photocatalytic reduction of CO2 to CH4 on In2O3-rGO nanocomposites [J].
Devi, Pinki ;
Singh, J. P. .
JOURNAL OF CO2 UTILIZATION, 2021, 43
[10]   Surface Modification of 2D Photocatalysts for Solar Energy Conversion [J].
Feng, Chengyang ;
Wu, Zhi-Peng ;
Huang, Kuo-Wei ;
Ye, Jinhua ;
Zhang, Huabin .
ADVANCED MATERIALS, 2022, 34 (23)