Computed Tomography-Based Quantitative Texture Analysis and Gut Microbial Community Signatures Predict Survival in Non-Small Cell Lung Cancer

被引:6
作者
Dora, David [1 ]
Weiss, Glen J. [2 ]
Megyesfalvi, Zsolt [3 ,4 ,5 ]
Gallfy, Gabriella [6 ]
Dulka, Edit [6 ]
Kerpel-Fronius, Anna [7 ]
Berta, Judit [3 ]
Moldvay, Judit [3 ]
Dome, Balazs [3 ,4 ,5 ,8 ]
Lohinai, Zoltan [6 ,9 ]
机构
[1] Semmelweis Univ, Dept Anat Histol & Embryol, H-1094 Budapest, Hungary
[2] UMass Chan Med Sch, Dept Med, Worcester, MA 01655 USA
[3] Natl Korany Inst Pulmonol, Dept Tumor Biol, H-1121 Budapest, Hungary
[4] Natl Inst Oncol, Dept Thorac Surg, H-1122 Budapest, Hungary
[5] Med Univ Vienna, Comprehens Canc Ctr, Dept Thorac Surg, A-1090 Vienna, Austria
[6] Pulm Hosp Torokbalint, H-2045 Torokbalint, Hungary
[7] Natl Korany Inst Pulmonol, Dept Radiol, H-1122 Budapest, Hungary
[8] Lund Univ, Dept Translat Med, S-22184 Lund, Sweden
[9] Semmelweis Univ, Translat Med Inst, H-1094 Budapest, Hungary
关键词
computed tomography-based texture analysis; artificial intelligence; advanced NSCLC; PD-L1; microbiome; IMMUNE CHECKPOINT INHIBITORS; T-CELLS; IMMUNOTHERAPY; METAGENOME; EFFICACY; OBESITY;
D O I
10.3390/cancers15205091
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary: There is a lack of understanding of the pathogenesis and mechanisms accounting for the large variability in tumor response to immune checkpoint inhibition. In this study, we investigate the role and composition of the human gut microbiome in the clinical setting by integrating shotgun metagenomics and quantitative texture analysis (QTA) of CT images in NSCLC patients treated with anti-PD-L1 immunotherapy using a novel machine learning approach. Using all available parameters, the XGB machine learning system predicted therapeutic response with an accuracy of 83% and correctly separated long-term survival patients from short-term survival patients with an accuracy of 69%. Our findings show that an integrated signature of these characteristics may predict outcomes more accurately than separate measures and may have potential therapeutic implications in the future. This study aims to combine computed tomography (CT)-based texture analysis (QTA) and a microbiome-based biomarker signature to predict the overall survival (OS) of immune checkpoint inhibitor (ICI)-treated non-small cell lung cancer (NSCLC) patients by analyzing their CT scans (n = 129) and fecal microbiome (n = 58). One hundred and five continuous CT parameters were obtained, where principal component analysis (PCA) identified seven major components that explained 80% of the data variation. Shotgun metagenomics (MG) and ITS analysis were performed to reveal the abundance of bacterial and fungal species. The relative abundance of Bacteroides dorei and Parabacteroides distasonis was associated with long OS (>6 mo), whereas the bacteria Clostridium perfringens and Enterococcus faecium and the fungal taxa Cortinarius davemallochii, Helotiales, Chaetosphaeriales, and Tremellomycetes were associated with short OS (<= 6 mo). Hymenoscyphus immutabilis and Clavulinopsis fusiformis were more abundant in patients with high (>= 50%) PD-L1-expressing tumors, whereas Thelephoraceae and Lachnospiraceae bacterium were enriched in patients with ICI-related toxicities. An artificial intelligence (AI) approach based on extreme gradient boosting evaluated the associations between the outcomes and various clinicopathological parameters. AI identified MG signatures for patients with a favorable ICI response and high PD-L1 expression, with 84% and 79% accuracy, respectively. The combination of QTA parameters and MG had a positive predictive value of 90% for both therapeutic response and OS. According to our hypothesis, the QTA parameters and gut microbiome signatures can predict OS, the response to therapy, the PD-L1 expression, and toxicity in NSCLC patients treated with ICI, and a machine learning approach can combine these variables to create a reliable predictive model, as we suggest in this research.
引用
收藏
页数:19
相关论文
共 50 条
[31]   A narrative review from gut to lungs: non-small cell lung cancer and the gastrointestinal microbiome [J].
Shah, Hely ;
Ng, Terry L. .
TRANSLATIONAL LUNG CANCER RESEARCH, 2023, 12 (04) :909-926
[32]   Gut microbiome affects the response to immunotherapy in non-small cell lung cancer [J].
Ren, Shengnan ;
Feng, Lingxin ;
Liu, Haoran ;
Mao, Yuke ;
Yu, Zhuang .
THORACIC CANCER, 2024, 15 (14) :1149-1163
[33]   Association of molecular characteristics with survival in advanced non-small cell lung cancer patients treated with checkpoint inhibitors [J].
Zhao, Dan ;
Mambetsariev, Isa ;
Li, Haiqing ;
Chen, Chen ;
Fricke, Jeremy ;
Fann, Patricia ;
Kulkarni, Prakash ;
Xing, Yan ;
Lee, Peter ;
Bild, Andrea ;
Massarelli, Erminia ;
Koczywas, Marianna ;
Reckamp, Karen ;
Salgia, Ravi .
CANCER RESEARCH, 2020, 80 (16)
[34]   Association of molecular characteristics with survival in advanced non-small cell lung cancer patients treated with checkpoint inhibitors [J].
Zhao, Dan ;
Mambetsariev, Isa ;
Li, Haiqing ;
Chen, Chen ;
Fricke, Jeremy ;
Fann, Patricia ;
Kulkarni, Prakash ;
Xing, Yan ;
Lee, Peter P. ;
Bild, Andrea ;
Massarelli, Erminia ;
Koczywas, Marianna ;
Reckamp, Karen ;
Salgia, Ravi .
LUNG CANCER, 2020, 146 :174-181
[35]   A community challenge to predict clinical outcomes after immune checkpoint blockade in non-small cell lung cancer [J].
Mason, Mike ;
Lapuente-Santana, Oscar ;
Halkola, Anni S. ;
Wang, Wenyu ;
Mall, Raghvendra ;
Xiao, Xu ;
Kaufman, Jacob ;
Fu, Jingxin ;
Pfeil, Jacob ;
Banerjee, Jineta ;
Chung, Verena ;
Chang, Han ;
Chasalow, Scott D. ;
Lin, Hung Ying ;
Chai, Rongrong ;
Yu, Thomas ;
Finotello, Francesca ;
Mirtti, Tuomas ;
Mayranpaa, Mikko I. ;
Bao, Jie ;
Verschuren, Emmy W. ;
Ahmed, Eiman I. ;
Ceccarelli, Michele ;
Miller, Lance D. ;
Monaco, Gianni ;
Hendrickx, Wouter R. L. ;
Sherif, Shimaa ;
Yang, Lin ;
Tang, Ming ;
Gu, Shengqing Stan ;
Zhang, Wubing ;
Zhang, Yi ;
Zeng, Zexian ;
Das Sahu, Avinash ;
Liu, Yang ;
Yang, Wenxian ;
Bedognetti, Davide ;
Tang, Jing ;
Eduati, Federica ;
Laajala, Teemu D. ;
Geese, William J. ;
Guinney, Justin ;
Szustakowski, Joseph D. ;
Vincent, Benjamin G. ;
Carbone, David P. .
JOURNAL OF TRANSLATIONAL MEDICINE, 2024, 22 (01)
[36]   Mechanisms and strategies of immunosenescence effects on non-small cell lung cancer (NSCLC) treatment: A comprehensive analysis and future directions [J].
Zhou, Huatao ;
Zheng, Zilong ;
Fan, Chengming ;
Zhou, Zijing .
SEMINARS IN CANCER BIOLOGY, 2025, 109 :44-66
[37]   Multi-omics and artificial intelligence predict clinical outcomes of immunotherapy in non-small cell lung cancer patients [J].
Mei, Ting ;
Wang, Ting ;
Zhou, Qinghua .
CLINICAL AND EXPERIMENTAL MEDICINE, 2024, 24 (01)
[38]   Presence of Akkermansiaceae in gut microbiome and immunotherapy effectiveness in patients with advanced non-small cell lung cancer [J].
Grenda, Anna ;
Iwan, Ewelina ;
Chmielewska, Izabela ;
Krawczyk, Pawel ;
Giza, Aleksandra ;
Bomba, Arkadiusz ;
Frak, Malgorzata ;
Rolska, Anna ;
Szczyrek, Michal ;
Kieszko, Robert ;
Kucharczyk, Tomasz ;
Jarosz, Bozena ;
Wasyl, Dariusz ;
Milanowski, Janusz .
AMB EXPRESS, 2022, 12 (01)
[39]   Presence of Akkermansiaceae in gut microbiome and immunotherapy effectiveness in patients with advanced non-small cell lung cancer [J].
Anna Grenda ;
Ewelina Iwan ;
Izabela Chmielewska ;
Paweł Krawczyk ;
Aleksandra Giza ;
Arkadiusz Bomba ;
Małgorzata Frąk ;
Anna Rolska ;
Michał Szczyrek ;
Robert Kieszko ;
Tomasz Kucharczyk ;
Bożena Jarosz ;
Dariusz Wasyl ;
Janusz Milanowski .
AMB Express, 12
[40]   Gut microbes as medical signature for the effectiveness of immunotherapy in patients with advanced non-small cell lung cancer [J].
Adugna, Adane ;
Muche, Yalew ;
Jemal, Mohammed ;
Habtegiorgis, Samuel Derbie ;
Belew, Habtamu ;
Azanaw Amare, Gashaw .
AGING MEDICINE, 2024, 7 (01) :121-130