Lower bounds on the maximal number of rational points on curves over finite fields

被引:1
作者
Bergstrom, Jonas [1 ]
Howe, Everett w.
Garcia, Elisa Lorenzo [2 ]
Ritzenthaler, Christophe [3 ]
机构
[1] Stockholms Univ, Matemat Inst, SE-10691 Stockholm, Sweden
[2] Univ Neuchatel, Rue Emile Argand 11, CH-2000 Neuchatel, Switzerland
[3] Univ Rennes, CNRS, IRMAR UMR 6625, F-35000 Rennes, France
关键词
11G20; 14H25; 14H30; 11R45; POLYNOMIALS; MONODROMY; MODULI; GENUS;
D O I
10.1017/S0305004123000476
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given genus g >= 1, we give lower bounds for the maximal number of rational points on a smooth projective absolutely irreducible curve of genus g over F-q. As a consequenceof Katz-Sarnak theory, we first get for any given g > 0, any epsilon > 0 and all q large enough, the existence of a curve of genus g over F-q with at least 1 + q + (2g-epsilon) root q rational points. Then using sums of powers of traces of Frobenius of hyperelliptic curves, we get a lower bound of the form 1 + q + 1.71 root qvalid for g >= 3 and odd q >= 11. Finally, explicit constructions of towers of curves improve this result: We show that the bound 1 + q + 4 root q - 32 is valid for allg >= 2 and for all q.
引用
收藏
页码:213 / 238
页数:26
相关论文
共 30 条
[1]   The integral monodromy of hyperelliptic and trielliptic curves [J].
Achter, Jeffrey D. ;
Pries, Rachel .
MATHEMATISCHE ANNALEN, 2007, 338 (01) :187-206
[2]  
Bergström J, 2009, DOC MATH, V14, P259
[3]   More points than expected on curves over finite field extensions [J].
Brock, BW ;
Granville, A .
FINITE FIELDS AND THEIR APPLICATIONS, 2001, 7 (01) :70-91
[4]  
Deligne P., 1971, Lecture Notes in Mathematics, V179, P139
[5]  
Deuring M., 1941, Abh. Math. Sem. Univ. Hamburg, V14, P197, DOI [10.1007/BF02940746, DOI 10.1007/BF02940746]
[6]  
Elkies ND, 2004, DUKE MATH J, V122, P399
[7]   HODGE-TATE STRUCTURES AND MODULAR-FORMS [J].
FALTINGS, G .
MATHEMATISCHE ANNALEN, 1987, 278 (1-4) :133-149
[8]  
Fouquet M, 2002, LECT NOTES COMPUT SC, V2369, P276
[9]   Big symplectic or orthogonal monodromy modulo l [J].
Hall, Chris .
DUKE MATHEMATICAL JOURNAL, 2008, 141 (01) :179-203
[10]   Large torsion subgroups of split Jacobians of curves of genus two or three [J].
Howe, EW ;
Leprévost, F ;
Poonen, B .
FORUM MATHEMATICUM, 2000, 12 (03) :315-364