Defining the spatial distribution of extracellular adenosine revealed a myeloid-dependent immunosuppressive microenvironment in pancreatic ductal adenocarcinoma

被引:9
作者
Graziano, Vincenzo [1 ,2 ]
Dannhorn, Andreas [3 ]
Hulme, Heather [3 ]
Williamson, Kate [4 ]
Buckley, Hannah [1 ]
Karim, Saadia A. [5 ]
Wilson, Matthew [6 ]
Lee, Sheng Y. [1 ]
Kaistha, Brajesh P. [1 ,11 ]
Islam, Sabita [7 ]
Thaventhiran, James E. D. [4 ]
Richards, Frances M. [1 ,12 ]
Goodwin, Richard [3 ]
Brais, Rebecca [8 ]
Morton, Jennifer P. [5 ,9 ]
Dovedi, Simon J. [6 ]
Schuller, Alwin G. [10 ]
Eyles, Jim [6 ]
Jodrell, Duncan, I [1 ,7 ]
机构
[1] Univ Cambridge, Canc Res UK Cambridge Inst, Cambridge, England
[2] Univ Cambridge, Canc Res UK Cambridge Ctr, Cambridge, England
[3] AstraZeneca R&D, Imaging & Data Analyt, Clin Pharmacol & Safety Sci CPSS, Cambridge, England
[4] Univ Cambridge, Med Res Council Toxicol Unit, Cambridge, England
[5] Canc Res UK Beatson Inst, Glasgow, Scotland
[6] AstraZeneca R&D, Oncol R&D, Res & Early Dev, Cambridge, England
[7] Univ Cambridge, Dept Oncol, Cambridge, England
[8] Cambridge Univ Hosp NHS Fdn Trust, Dept Pathol, Cambridge, England
[9] Univ Glasgow, Sch Canc Sci, Glasgow, Scotland
[10] AstraZeneca R&D Boston, Oncol, Waltham, MA USA
[11] AstraZeneca, Oncol R&D, Res & Early Dev, Cambridge, England
[12] AstraZeneca, Oncol R&D, Translat Med, Cambridge, England
基金
英国医学研究理事会;
关键词
Adenosine; Macrophages; Tumor Microenvironment; Immunity; Innate; Immunotherapy; MISMATCH REPAIR DEFICIENCY; T-CELLS; TUMOR-GROWTH; CANCER; RECEPTOR; MACROPHAGES; EXPRESSION; CD73; CHEMOTHERAPY; SUPPRESSION;
D O I
10.1136/jitc-2022-006457
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundThe prognosis for patients with pancreatic ductal adenocarcinoma (PDAC) remains extremely poor. It has been suggested that the adenosine pathway contributes to the ability of PDAC to evade the immune system and hence, its resistance to immuno-oncology therapies (IOT), by generating extracellular adenosine (eAdo). MethodsUsing genetically engineered allograft models of PDAC in syngeneic mice with defined and different immune infiltration and response to IOT and autochthonous tumors in KPC mice we investigated the impact of the adenosine pathway on the PDAC tumor microenvironment (TME). Flow cytometry and imaging mass cytometry (IMC) were used to characterize the subpopulation frequency and spatial distribution of tumor-infiltrating immune cells. Mass spectrometry imaging (MSI) was used to visualize adenosine compartmentalization in the PDAC tumors. RNA sequencing was used to evaluate the influence of the adenosine pathway on the shaping of the immune milieu and correlate our findings to published data sets in human PDAC. ResultsWe demonstrated high expression of adenosine pathway components in tumor-infiltrating immune cells (particularly myeloid populations) in the murine models. MSI demonstrated that extracellular adenosine distribution is heterogeneous in tumors, with high concentrations in peri-necrotic, hypoxic regions, associated with rich myeloid infiltration, demonstrated using IMC. Protumorigenic M2 macrophages express high levels of the Adora2a receptor; particularly in the IOT resistant model. Blocking the in vivo formation and function of eAdo (Adoi), using a combination of anti-CD73 antibody and an Adora2a inhibitor slowed tumor growth and reduced metastatic burden. Additionally, blocking the adenosine pathway improved the efficacy of combinations of cytotoxic agents or immunotherapy. Adoi remodeled the TME, by reducing the infiltration of M2 macrophages and regulatory T cells. RNA sequencing analysis showed that genes related to immune modulation, hypoxia and tumor stroma were downregulated following Adoi and a specific adenosine signature derived from this is associated with a poorer prognosis in patients with PDAC. ConclusionsThe formation of eAdo promotes the development of the immunosuppressive TME in PDAC, contributing to its resistance to conventional and novel therapies. Therefore, inhibition of the adenosine pathway may represent a strategy to modulate the PDAC immune milieu and improve therapy response in patients with PDAC.
引用
收藏
页数:21
相关论文
共 63 条
[51]   Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer [J].
Steele, Nina G. ;
Carpenter, Eileen S. ;
Kemp, Samantha B. ;
Sirihorachai, Veerin R. ;
The, Stephanie ;
Delrosario, Lawrence ;
Lazarus, Jenny ;
Amir, El-ad David ;
Gunchick, Valerie ;
Espinoza, Carlos ;
Bell, Samantha ;
Harris, Lindsey ;
Lima, Fatima ;
Irizarry-Negron, Valerie ;
Paglia, Daniel ;
Macchia, Justin ;
Chu, Angel Ka Yan ;
Schofield, Heather ;
Wamsteker, Erik-Jan ;
Kwon, Richard ;
Schulman, Allison ;
Prabhu, Anoop ;
Law, Ryan ;
Sondhi, Arjun ;
Yu, Jessica ;
Patel, Arpan ;
Donahue, Katelyn ;
Nathan, Hari ;
Cho, Clifford ;
Anderson, Michelle A. ;
Sahai, Vaibhav ;
Lyssiotis, Costas A. ;
Zou, Weiping ;
Allen, Benjamin L. ;
Rao, Arvind ;
Crawford, Howard C. ;
Bednar, Filip ;
Frankel, Timothy L. ;
di Magliano, Marina Pasca .
NATURE CANCER, 2020, 1 (11) :1097-+
[52]   CD39/ENTPD1 Expression by CD4+Foxp3+ Regulatory T Cells Promotes Hepatic Metastatic Tumor Growth in Mice [J].
Sun, Xiaofeng ;
Wu, Yan ;
Gao, Wenda ;
Enjyoji, Keiichi ;
Csizmadia, Eva ;
Mueller, Christa E. ;
Murakami, Takashi ;
Robson, Simon C. .
GASTROENTEROLOGY, 2010, 139 (03) :1030-1040
[53]   Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia [J].
Synnestvedt, K ;
Furuta, GT ;
Comerford, KM ;
Louis, N ;
Karhausen, J ;
Eltzschig, HK ;
Hansen, KR ;
Thompson, LF ;
Colgan, SP .
JOURNAL OF CLINICAL INVESTIGATION, 2002, 110 (07) :993-1002
[54]   Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39 (vol 22, pg 729, 2019) [J].
Takenaka, Maisa C. ;
Gabriely, Galina ;
Rothhammer, Veit ;
Mascanfroni, Ivan D. ;
Wheeler, Michael A. ;
Chao, Chun-Cheih ;
Gutierrez-Vazquez, Cristina ;
Kenison, Jessica ;
Tjon, Emily C. ;
Barroso, Andreia ;
Vandeventer, Tyler ;
de Lima, Kalil Alves ;
Rothweiler, Sonja ;
Mayo, Lior ;
Ghannam, Soufiene ;
Zandee, Stephanie ;
Healy, Luke ;
Sherr, David ;
Farez, Mauricio F. ;
Prat, Alexandre ;
Antel, Jack ;
Reardon, David A. ;
Zhang, Hailei ;
Robson, Simon C. ;
Getz, Gad ;
Weiner, Howard L. ;
Quintana, Francisco J. .
NATURE NEUROSCIENCE, 2019, 22 (09) :1533-1533
[55]  
UK cancer research, 2022, US
[56]  
Williamson K., 2023, ZENODO
[57]   The A2B Adenosine Receptor Promotes Th17 Differentiation via Stimulation of Dendritic Cell IL-6 [J].
Wilson, Jeffrey M. ;
Kurtz, Courtney C. ;
Black, Steven G. ;
Ross, William G. ;
Alam, Mohammed S. ;
Linden, Joel ;
Ernst, Peter B. .
JOURNAL OF IMMUNOLOGY, 2011, 186 (12) :6746-6752
[58]   Control of Metastases via Myeloid CD39 and NK Cell Effector Function [J].
Yan, Juming ;
Li, Xian-Yang ;
Aguilera, Amelia Roman ;
Xiao, Christos ;
Jacoberger-Foisac, Celia ;
Nowlan, Bianca ;
Robson, Simon C. ;
Beers, Courtney ;
Moesta, Achim K. ;
Geetha, Nishamol ;
Teng, Michele W. L. ;
Smyth, Mark J. .
CANCER IMMUNOLOGY RESEARCH, 2020, 8 (03) :356-367
[59]   Co-inhibition of CD73 and A2AR Adenosine Signaling Improves Anti-tumor Immune Responses [J].
Young, Arabella ;
Ngiow, Shin Foong ;
Barkauskas, Deborah S. ;
Sult, Erin ;
Hay, Carl ;
Blake, Stephen J. ;
Huang, Qihui ;
Liu, Jing ;
Takeda, Kazuyoshi ;
Teng, Michele W. L. ;
Sachsenmeier, Kris ;
Smyth, Mark J. .
CANCER CELL, 2016, 30 (03) :391-403
[60]   Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer [J].
Zhang, Lei ;
Li, Ziyi ;
Skrzypczynska, Katarzyna M. ;
Fang, Qiao ;
Zhang, Wei ;
O'Brien, Sarah A. ;
He, Yao ;
Wang, Lynn ;
Zhang, Qiming ;
Kim, Aeryon ;
Gao, Ranran ;
Orf, Jessica ;
Wang, Tao ;
Sawant, Deepali ;
Kang, Jiajinlong ;
Bhatt, Dev ;
Lu, Daniel ;
Li, Chi-Ming ;
Rapaport, Aaron S. ;
Perez, Kristy ;
Ye, Yingjiang ;
Wang, Shan ;
Hu, Xueda ;
Ren, Xianwen ;
Ouyang, Wenjun ;
Shen, Zhanlong ;
Egen, Jackson G. ;
Zhang, Zemin ;
Yu, Xin .
CELL, 2020, 181 (02) :442-+