THE TRUNCATED MOMENT PROBLEM FOR UNITAL COMMUTATIVE R-ALGEBRAS

被引:0
作者
Curto, Raul E. [1 ]
Ghasemi, Mehdi [2 ]
Infusino, Maria [3 ]
Kuhlmann, Salma [4 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52246 USA
[2] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK S7N 5E6, Canada
[3] Univ Cagliari, Dipartimento Matemat & informat, Palazzo Sci,72 Via Osped, I-09124 Cagliari, Italy
[4] Univ Konstanz, Fachbereich Math & Stat, Univ Str 10, D-78457 Constance, Germany
关键词
Truncated moment problem; full moment problem; measure; integral representation; linear functional; WEIGHTED SHIFTS; GLOBAL OPTIMIZATION; REALIZABILITY; DENSITY; THEOREM; REPRESENTATIONS; POLYNOMIALS; FUNCTIONALS; SYSTEMS; PROOF;
D O I
10.7900/jot.2021nov26.2392
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate when a linear functional L defined on a linear sub-space B of a unital commutative real algebra A admits an integral representa-tion with respect to a positive Radon measure supported on a closed subset K of the character space of A. We provide a criterion for the existence of such a representation for L when A is equipped with a submultiplicative seminorm. We then build on this result to prove our main theorem for A not necessarily equipped with a topology.This allows us to extend well-known results on truncated moment problems.
引用
收藏
页码:223 / 261
页数:39
相关论文
共 82 条
  • [1] Akhiezer N I., 1965, CLASSICAL MOMENT PRO
  • [2] The moment problem on the Wiener space
    Albeverio, Sergio
    Herzberg, Frederik
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (01): : 7 - 18
  • [3] Moment problems in an infinite number of variables
    Alpay, Daniel
    Jorgensen, Palle E. T.
    Kimsey, David P.
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2015, 18 (04)
  • [4] [Anonymous], 1996, Memoirs Amer. Math. Soc.
  • [5] [Anonymous], 1959, Mat. Sb. (N.S.)
  • [6] THE SPACE L-OMEGA AND CONVEX TOPOLOGICAL RINGS
    ARENS, R
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (10) : 931 - 935
  • [7] The proof of Tchakaloff's theorem
    Bayer, Christian
    Teichmann, Josef
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (10) : 3035 - 3040
  • [8] Berezansky Y. M., 1971, UKR MAT ZH, V23, P291
  • [9] BEREZANSKY Y.M., 1988, SPECTRAL METHODS INF, VII
  • [10] INTEGRAL-REPRESENTATIONS FOR SCHWINGER FUNCTIONALS AND MOMENT PROBLEM OVER NUCLEAR SPACES
    BORCHERS, HJ
    YNGVASON, J
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 43 (03) : 255 - 271