THE TRUNCATED MOMENT PROBLEM FOR UNITAL COMMUTATIVE R-ALGEBRAS

被引:0
作者
Curto, Raul E. [1 ]
Ghasemi, Mehdi [2 ]
Infusino, Maria [3 ]
Kuhlmann, Salma [4 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52246 USA
[2] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK S7N 5E6, Canada
[3] Univ Cagliari, Dipartimento Matemat & informat, Palazzo Sci,72 Via Osped, I-09124 Cagliari, Italy
[4] Univ Konstanz, Fachbereich Math & Stat, Univ Str 10, D-78457 Constance, Germany
关键词
Truncated moment problem; full moment problem; measure; integral representation; linear functional; WEIGHTED SHIFTS; GLOBAL OPTIMIZATION; REALIZABILITY; DENSITY; THEOREM; REPRESENTATIONS; POLYNOMIALS; FUNCTIONALS; SYSTEMS; PROOF;
D O I
10.7900/jot.2021nov26.2392
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate when a linear functional L defined on a linear sub-space B of a unital commutative real algebra A admits an integral representa-tion with respect to a positive Radon measure supported on a closed subset K of the character space of A. We provide a criterion for the existence of such a representation for L when A is equipped with a submultiplicative seminorm. We then build on this result to prove our main theorem for A not necessarily equipped with a topology.This allows us to extend well-known results on truncated moment problems.
引用
收藏
页码:223 / 261
页数:39
相关论文
共 81 条
[1]  
Akhiezer N.I., 1965, The Classical Moment Problem and Some Related Questions in Analysis
[2]   The moment problem on the Wiener space [J].
Albeverio, Sergio ;
Herzberg, Frederik .
BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (01) :7-18
[3]   Moment problems in an infinite number of variables [J].
Alpay, Daniel ;
Jorgensen, Palle E. T. ;
Kimsey, David P. .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2015, 18 (04)
[4]  
[Anonymous], 1996, Memoirs Amer. Math. Soc.
[5]  
[Anonymous], 1966, Lectures on Choquets theorem
[6]  
[Anonymous], 1969, Representation Theory
[7]  
[Anonymous], 1959, Mat. Sb
[8]  
[Anonymous], 2010, Imperial College Press Optimization
[9]  
[Anonymous], 1979, J. Oper. Theory
[10]   THE SPACE L-OMEGA AND CONVEX TOPOLOGICAL RINGS [J].
ARENS, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (10) :931-935