A high-order numerical technique for generalized time-fractional Fisher's equation

被引:3
|
作者
Choudhary, Renu [1 ]
Singh, Satpal [1 ]
Kumar, Devendra [1 ]
机构
[1] Birla Inst Technol & Sci, Dept Math, Pilani 333031, Rajasthan, India
关键词
Caputo derivative; compact finite difference scheme; convergence; stability; time-fractional generalized Fisher's equations; SCHEME;
D O I
10.1002/mma.9435
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generalized time-fractional Fisher's equation is a substantial model for illustrating the system's dynamics. Studying effective numerical methods for this equation has considerable scientific importance and application value. In that direction, this paper presents designing and analyzing a high-order numerical scheme for the generalized time-fractional Fisher's equation. The time-fractional derivative is taken in the Caputo sense and approximated using Euler backward discretization. The quasilinearization technique is used to linearize the problem, and then a compact finite difference scheme is considered for discretizing the equation in space direction. Our numerical method is convergent of O ( k(2-alpha) + h(4)), where h and k are step sizes in spatial and temporal directions, respectively. Three problems are tested numerically by implementing the proposed technique, and the acquired results reveal that the proposed method is suitable for solving this problem.
引用
收藏
页码:16050 / 16071
页数:22
相关论文
共 50 条
  • [41] Numerical Methods for Solving the Time-fractional Telegraph Equation
    Wei, Leilei
    Liu, Lijie
    Sun, Huixia
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (06): : 1509 - 1528
  • [42] An efficient numerical method for a time-fractional telegraph equation
    Huang, Jian
    Cen, Zhongdi
    Xu, Aimin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (05) : 4672 - 4689
  • [43] Higher Order Stable Numerical Algorithm for the Variable Order Time-Fractional Sub-diffusion Equation
    Rajput, Priyanka
    Srivastava, Nikhil
    Singh, Vineet Kumar
    IRANIAN JOURNAL OF SCIENCE, 2025, 49 (02) : 369 - 381
  • [44] A high order numerical scheme for solving a class of non-homogeneous time-fractional reaction diffusion equation
    Roul, Pradip
    Goura, V. M. K. Prasad
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (02) : 1506 - 1534
  • [45] A High-Order Method with a Temporal Nonuniform Mesh for a Time-Fractional Benjamin-Bona-Mahony Equation
    Lyu, Pin
    Vong, Seakweng
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (03) : 1607 - 1628
  • [46] A high-order B-spline collocation scheme for solving a nonhomogeneous time-fractional diffusion equation
    Roul, Pradip
    Goura, V. M. K. Prasad
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) : 546 - 567
  • [47] Numerical scheme with convergence for a generalized time-fractional Telegraph-type equation
    Kumar, Kamlesh
    Pandey, Rajesh K.
    Sharma, Shiva
    Xu, Yufeng
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (03) : 1164 - 1183
  • [48] An implicit scheme for time-fractional coupled generalized Burgers' equation
    Vigo-Aguiar, J.
    Chawla, Reetika
    Kumar, Devendra
    Mazumdar, Tapas
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2024, 62 (03) : 689 - 710
  • [49] A numerical approach for nonlinear time-fractional diffusion equation with generalized memory kernel
    Seal, Aniruddha
    Natesan, Srinivasan
    NUMERICAL ALGORITHMS, 2024, 97 (02) : 539 - 565
  • [50] A Second-Order Difference Scheme for Generalized Time-Fractional Diffusion Equation with Smooth Solutions
    Khibiev, Aslanbek
    Alikhanov, Anatoly
    Huang, Chengming
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (01) : 101 - 117