Proposing lead compounds for the development of SARS-CoV-2 receptor-binding inhibitors

被引:1
|
作者
Awuni, Elvis [1 ]
Musah, Radiatu Abdallah [1 ]
机构
[1] Univ Cape Coast, Sch Biol Sci, CANS, Dept Biochem, Cape Coast, Ghana
关键词
COVID-19; SARS-CoV-2; spike receptor-binding domain; structure-based virtual screening; molecular dynamics; GENETIC ALGORITHM; DRUG DISCOVERY; PROTEIN; SOLUBILITY; MODEL; ENTRY; AMBER; LIPOPHILICITY; RECOGNITION; SIMULATION;
D O I
10.1080/07391102.2023.2204505
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The COVID-19 pandemic has had deleterious effects on the world and demands urgent measures to find therapeutic agents to combat the current and related future outbreaks. The entry of SARS-CoV-2 into the host's cell is facilitated by the interaction between the viral spike receptor-binding domain (sRBD) and the human angiotensin-converting enzyme 2 (hACE2). Although the interface of sRBD involved in the sRBD-hACE2 interaction has been projected as a primary vaccine and drug target, currently no small-molecule drugs have been approved for covid-19 treatment targeting sRBD. Herein structure-based virtual screening and molecular dynamics (MD) simulation strategies were applied to identify novel potential small-molecule binders of the SARS-CoV-2 sRBD from an sRBD-targeted compound library as leads for the development of anti-COVID-19 drugs. The library was initially screened against sRBD by using the GOLD docking program whereby 19 compounds were shortlisted based on docking scores after using a control compound to set the selection cutoff. The stability of each compound in MD simulations was used as a further standard to select four hits namely T4S1820, T4589, E634-1449, and K784-7078. Analyses of simulations data showed that the four compounds remained stably bound to sRBD for >= 80 ns with reasonable affinities and interacted with pharmacologically important amino acid residues. The compounds exhibited fair solubility, lipophilicity, and toxicity-propensity characteristics that could be improved through lead optimization regimes. The overall results suggest that the scaffolds of T4S1820, E634-1449, and K784-7078 could serve as seeds for developing potent small-molecule inhibitors of SARS-CoV-2 receptor binding and cell entry.Communicated by Ramaswamy H. Sarma
引用
收藏
页码:2282 / 2297
页数:16
相关论文
共 50 条
  • [1] A Potent Neutralizing Nanobody Targeting the Spike Receptor-Binding Domain of SARS-CoV-2 and the Structural Basis of Its Intimate Binding
    Yang, Jing
    Lin, Sheng
    Sun, Honglu
    Chen, Zimin
    Yang, Fanli
    Lin, Xi
    Guo, Liyan
    Wang, Lingling
    Wen, Ao
    Zhang, Xindan
    Dai, Yushan
    He, Bin
    Cao, Yu
    Dong, Haohao
    Liu, Xianbo
    Chen, Bo
    Li, Jian
    Zhao, Qi
    Lu, Guangwen
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [2] Peptide Inhibitors of the Interaction of the SARS-CoV-2 Receptor-Binding Domain with the ACE2 Cell Receptor
    Bibilashvili, R. Sh.
    Sidorova, M. V.
    Dudkina, U. S.
    Palkeeva, M. E.
    Molokoedov, A. S.
    Kozlovskaya, L. I.
    Egorov, A. M.
    Ishmukhametov, A. A.
    Parfyonova, E. V.
    BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY, 2021, 15 (04) : 274 - 280
  • [3] Detection of Binding Sites on SARS-CoV-2 Spike Protein Receptor-Binding Domain by Molecular Dynamics Simulations in Mixed Solvents
    Jokinen, Elmeri M.
    Gopinath, Krishnasamy
    Kurkinen, Sami T.
    Pentikainen, Olli T.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (04) : 1281 - 1289
  • [4] In silico identification of strong binders of the SARS-CoV-2 receptor-binding domain
    Behloul, Nouredine
    Baha, Sarra
    Guo, Yuqian
    Yang, Zhifang
    Shi, Ruihua
    Meng, Jihong
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2021, 890
  • [5] Conformational Dynamics of the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein
    Mamchur, Aleksandra A.
    Stanishneva-Konovalova, Tatiana B.
    Mokrushina, Yuliana A.
    Abrikosova, Viktoria A.
    Guo, Yu
    Zhang, Hongkai
    Terekhov, Stanislav S.
    Smirnov, Ivan V.
    Yaroshevich, Igor A.
    BIOMEDICINES, 2022, 10 (12)
  • [6] Promising terpenes as SARS-CoV-2 spike receptor-binding domain (RBD) attachment inhibitors to the human ACE2 receptor: Integrated computational approach
    Muhseen, Ziyad Tariq
    Hameed, Alaa R.
    Al-Hasani, Halah M. H.
    ul Qamar, Muhammad Tahir
    Li, Guanglin
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 320
  • [7] Computational design of ultrashort peptide inhibitors of the receptor-binding domain of the SARS-CoV-2 S protein
    Pei, Pengfei
    Qin, Hongbo
    Chen, Jialin
    Wang, Fengli
    He, Chengzhi
    He, Shiting
    Hong, Bixia
    Liu, Ke
    Qiao, Renzhong
    Fan, Huahao
    Tong, Yigang
    Chen, Long
    Luo, Shi-Zhong
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [8] Insights into the conformation changes of SARS-CoV-2 spike receptor-binding domain on graphene
    Du, Jianbin
    Yang, Chunmei
    Ma, Xiangyun
    Li, Qifeng
    APPLIED SURFACE SCIENCE, 2022, 578
  • [9] A Fungal Defensin Targets the SARS-CoV-2 Spike Receptor-Binding Domain
    Gao, Bin
    Zhu, Shunyi
    JOURNAL OF FUNGI, 2021, 7 (07)
  • [10] Broad immunity to SARS-CoV-2 variants of concern mediated by a SARS-CoV-2 receptor-binding domain protein vaccine
    Deliyannis, Georgia
    Gherardin, Nicholas A.
    Wong, Chinn Yi
    Grimley, Samantha L.
    Cooney, James P.
    Redmond, Samuel J.
    Ellenberg, Paula
    Davidson, Kathryn C.
    Mordant, Francesca L.
    Smith, Tim
    Gillard, Marianne
    Lopez, Ester
    McAuley, Julie
    Tan, Chee Wah
    Wang, Jing J.
    Zeng, Weiguang
    Littlejohn, Mason
    Zhou, Runhong
    Chan, Jasper Fuk-Woo
    Chen, Zhi-wei
    Hartwig, Airn E.
    Bowen, Richard
    Mackenzie, Jason M.
    Vincan, Elizabeth
    Torresi, Joseph
    Kedzierska, Katherine
    Pouton, Colin W.
    Gordon, Tom P.
    Wang, Lin-fa
    Kent, Stephen J.
    Wheatley, Adam K.
    Lewin, Sharon R.
    Subbarao, Kanta
    Chung, Amy W.
    Pellegrini, Marc
    Munro, Trent
    Nolan, Terry
    Rockman, Steven
    Jackson, David C.
    Purcell, Damian F. J.
    Godfrey, Dale I.
    EBIOMEDICINE, 2023, 92