Decoupling Redox Hopping and Catalysis in Metal-Organic Frameworks -based Electrocatalytic CO2 Reduction

被引:6
|
作者
Li, Xinlin [1 ]
Rajasree, Sreehari Surendran [1 ]
Gude, Venkatesh [1 ]
Maindan, Karan [1 ]
Deria, Pravas [1 ]
机构
[1] Southern Illinois Univ Carbondale, Sch Chem & Biomol Sci, 1245 Lincoln Dr, Carbondale, IL 62901 USA
基金
美国国家科学基金会;
关键词
CO2; Reduction; Electrocatalysis; Electron Transport; Metal-Organic Frameworks; Molecular Catalysts; MOF THIN-FILM; CHARGE-TRANSFER; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; COBALT-PORPHYRINS; ELECTROREDUCTION; LIGAND; FUNCTIONALIZATION; NU-1000; DEVICE;
D O I
10.1002/anie.202219046
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Traditional MOF e-CRR, constructed from catalytic linkers, manifest a kinetic bottleneck during their multi-electron activation. Decoupling catalysis and charge transport can address such issues. Here, we build two MOF/e-CRR systems, CoPc@NU-1000 and TPP(Co)@NU-1000, by installing cobalt metalated phthalocyanine and tetraphenylporphyrin electrocatalysts within the redox active NU-1000 MOF. For CoPc@NU-1000, the e-CRR responsive Co-I/0 potential is close to that of NU-1000 reduction compared to the TPP(Co)@NU-1000. Efficient charge delivery, defined by a higher diffusion (D-hop = 4.1x10(-12) cm(2) s(-1)) and low charge-transport resistance (R-CT(MOF) = 59.5 ohm) in CoPC@NU-1000 led FECO = 80%. In contrast, TPP(Co)@NU-1000 fared a poor FECO = 24% (D-hop = 1.4x10(-12) cm(2) s(-1) and R-CT(MOF) = 91.4 ohm). For such a decoupling strategy, careful choice of the host framework is critical in pairing up with the underlying electrochemical properties of the catalysts to facilitate the charge delivery for its activation.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Structural Engineering of Metal-Organic Frameworks for Efficient CO2 Reduction Reaction
    Cheng, Mingjie
    Zheng, Xiaoli
    Ma, Fuxiao
    Zhu, Zhengkai
    Xu, Qun
    CHEMCATCHEM, 2024, 16 (17)
  • [42] Electrocatalytic metal-organic frameworks
    Noh, Hyunho
    Peters, Aaron
    Farha, Omar
    Hupp, Joseph
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [43] Application of metal-organic frameworks in CO2 hydrogenation
    Zhou C.
    Nan Y.-Y.
    Zha F.
    Tian H.-F.
    Tang X.-H.
    Chang Y.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2021, 49 (10): : 1444 - 1457
  • [44] Utilizing metal-organic frameworks for CO2 separation
    Farha, Omar K.
    Hupp, Joseph T.
    Wilmer, Christopher E.
    Snurr, Randall Q.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [45] Research on Metal-organic Frameworks for CO2 Capture
    Xin, Chunling
    Wang, Suqing
    Yan, Yongmei
    PROCEEDINGS OF THE 2017 7TH INTERNATIONAL CONFERENCE ON MECHATRONICS, COMPUTER AND EDUCATION INFORMATIONIZATION (MCEI 2017), 2017, 75 : 151 - 154
  • [46] Thermodynamics of CO2 capture in metal-organic frameworks
    Wu, Di
    Gassensmith, Jeremiah
    McDonald, Thomas
    Guo, Xiaofeng
    Quan, Zewei
    Ushakov, Sergey
    Zhang, Peng
    Long, Jeffrey
    Navrotsky, Alexandra
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [47] Redox Hopping in Metal-Organic Frameworks through the Lens of the Scholz Model
    Yan, Minliang
    Johnson, Eric M.
    Morris, Amanda J.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (47): : 10700 - 10709
  • [48] Metal-Organic Frameworks for CO2 Chemical Transformations
    He, Hongming
    Perman, Jason A.
    Zhu, Guangshan
    Ma, Shengqian
    SMALL, 2016, 12 (46) : 6309 - 6324
  • [49] Chemical vapor deposited metal-organic covalent networks for electrocatalytic CO2 reduction
    Zhao, Junjie
    Zhu, Minghui
    Zeng, Joy
    Manthiram, Karthish
    Gleason, Karen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [50] Functionalized metal organic frameworks for CO2 reduction
    Johnson, Karl
    Li, Lin
    Ye, Jingyun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254