Decoupling Redox Hopping and Catalysis in Metal-Organic Frameworks -based Electrocatalytic CO2 Reduction

被引:6
|
作者
Li, Xinlin [1 ]
Rajasree, Sreehari Surendran [1 ]
Gude, Venkatesh [1 ]
Maindan, Karan [1 ]
Deria, Pravas [1 ]
机构
[1] Southern Illinois Univ Carbondale, Sch Chem & Biomol Sci, 1245 Lincoln Dr, Carbondale, IL 62901 USA
基金
美国国家科学基金会;
关键词
CO2; Reduction; Electrocatalysis; Electron Transport; Metal-Organic Frameworks; Molecular Catalysts; MOF THIN-FILM; CHARGE-TRANSFER; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; COBALT-PORPHYRINS; ELECTROREDUCTION; LIGAND; FUNCTIONALIZATION; NU-1000; DEVICE;
D O I
10.1002/anie.202219046
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Traditional MOF e-CRR, constructed from catalytic linkers, manifest a kinetic bottleneck during their multi-electron activation. Decoupling catalysis and charge transport can address such issues. Here, we build two MOF/e-CRR systems, CoPc@NU-1000 and TPP(Co)@NU-1000, by installing cobalt metalated phthalocyanine and tetraphenylporphyrin electrocatalysts within the redox active NU-1000 MOF. For CoPc@NU-1000, the e-CRR responsive Co-I/0 potential is close to that of NU-1000 reduction compared to the TPP(Co)@NU-1000. Efficient charge delivery, defined by a higher diffusion (D-hop = 4.1x10(-12) cm(2) s(-1)) and low charge-transport resistance (R-CT(MOF) = 59.5 ohm) in CoPC@NU-1000 led FECO = 80%. In contrast, TPP(Co)@NU-1000 fared a poor FECO = 24% (D-hop = 1.4x10(-12) cm(2) s(-1) and R-CT(MOF) = 91.4 ohm). For such a decoupling strategy, careful choice of the host framework is critical in pairing up with the underlying electrochemical properties of the catalysts to facilitate the charge delivery for its activation.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Metal-Organic Frameworks for Photocatalytic Water Splitting and CO2 Reduction
    Sun, Kang
    Qian, Yunyang
    Jiang, Hai-Long
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (15)
  • [22] Titanium based metal-organic frameworks for visible light photocatalytic reduction of CO2
    Logon, Matthew
    Aleger, Nathan
    Ayad, Suliman
    Adamson, Jeremy
    Hanson, Kenneth
    Uribe-Romo, Fernando
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [23] Designing efficient catalysts for CO2 reduction based on porphyrinic metal-organic frameworks
    Zhang, Peng
    Yuan, Shuai
    Feng, Xuhui
    Li, Ying
    Zhou, Hongcai
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [24] Engineering Metal-Organic Frameworks for the Electrochemical Reduction of CO2: A Minireview
    Wang, Riming
    Kapteijn, Freek
    Gascon, Jorge
    CHEMISTRY-AN ASIAN JOURNAL, 2019, 14 (20) : 3452 - 3461
  • [25] Redox doping and electron hopping in conductive metal-organic frameworks
    Aubrey, Michael
    Wiers, Brian
    Andrews, Sean
    Sakurai, Tsuneaki
    Reyes-Lillo, Sebastian
    Hamed, Sarnia
    Yu, Chung-Jui
    Darago, Lucy
    Mason, Jarad
    Grandjean, Fernande
    Long, Gary
    Sekr, Shu
    Neaton, Jeffrey B.
    Yang, Peidong
    Long, Jeffrey
    Gonzalez, Miguel Carlos
    Pedersen, Kasper
    Clerac, Rodolphe
    Oktawiec, Julia
    Kapelewski, Matt
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [26] Metal-organic frameworks for CO2 photoreduction
    Zhang, Lei
    Zhang, Junqing
    FRONTIERS IN ENERGY, 2019, 13 (02) : 221 - 250
  • [27] Metal-organic frameworks for CO2 photoreduction
    Lei Zhang
    Junqing Zhang
    Frontiers in Energy, 2019, 13 : 221 - 250
  • [28] CO2 Adsorption in Metal-organic Frameworks
    Kim, Jun
    Kim, Hee-Young
    Ahn, Wha-Seung
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2013, 51 (02): : 171 - 180
  • [29] Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols
    Albo, Jonathan
    Vallejo, Daniel
    Beobide, Garikoitz
    Castillo, Oscar
    Castano, Pedro
    Irabien, Angel
    CHEMSUSCHEM, 2017, 10 (06) : 1100 - 1109
  • [30] The application of metal-organic frameworks in electrocatalytic nitrogen reduction
    Yihang Wang
    Qiang Li
    Wei Shi
    Peng Cheng
    Chinese Chemical Letters, 2020, 31 (07) : 1768 - 1772