Regional mapping and monitoring land use/land cover changes: a modified approach using an ensemble machine learning and multitemporal Landsat data

被引:8
作者
Elmahdy, Samy I. [1 ]
Mohamed, Mohamed M. [1 ,2 ]
机构
[1] United Arab Emirates Univ, Coll Civil & Environm Engn Dept, Al Ain, Abu Dhabi, U Arab Emirates
[2] United Arab Emirates Univ, Natl Water & Energy Ctr, Al Ain, U Arab Emirates
关键词
UAE; LULC; random forest; support vector machine; ensemble machine learning; remote sensing; change detection; Landsat; LANDSLIDE SUSCEPTIBILITY; IMAGE CLASSIFICATION; ALGORITHMS; FOREST; PERFORMANCE; VEGETATION; MODEL; NDVI;
D O I
10.1080/10106049.2023.2184500
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Regional mapping and monitoring of land use/land cover (LULC) still remain a challenge that depend on classifier and remote sensing data selected. This study aims to create precise LULC maps and explore the efficiency of an ensemble machine learning approach that integrates random forest (RF) and support vector machine (SVM). Two sets of remote sensing data were multi-temporal Landsat and a single scene from QuickBird covering the coastal area of the United Arab Emirates (UAE) were used. By training the classifier using samples collected from QuickBird and knowledge-based and optimal parameterization, the overall accuracy was enhanced from 70% to more than 90%. For the proposed approach, the result showed that the F1-score was 0.99. The results exhibited a rapid increase in all classes, accompanied by a significant change in the shoreline. The proposed approach has the potential to be applied to other regions and to produce accurate LULC maps.
引用
收藏
页数:25
相关论文
共 62 条
[1]   Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data [J].
Abdi, Abdulhakim Mohamed .
GISCIENCE & REMOTE SENSING, 2020, 57 (01) :1-20
[2]   A novel hybrid approach of Bayesian Logistic Regression and its ensembles for landslide susceptibility assessment [J].
Abedini, Mousa ;
Ghasemian, Bahareh ;
Shirzadi, Ataollah ;
Shahabi, Himan ;
Chapi, Kamran ;
Binh Thai Pham ;
Bin Ahmad, Baharin ;
Dieu Tien Bui .
GEOCARTO INTERNATIONAL, 2019, 34 (13) :1427-1457
[3]   Machine learning for neuroirnaging with scikit-learn [J].
Abraham, Alexandre ;
Pedregosa, Fabian ;
Eickenberg, Michael ;
Gervais, Philippe ;
Mueller, Andreas ;
Kossaifi, Jean ;
Gramfort, Alexandre ;
Thirion, Bertrand ;
Varoquaux, Gael .
FRONTIERS IN NEUROINFORMATICS, 2014, 8
[4]   Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers [J].
Adam, Elhadi ;
Mutanga, Onisimo ;
Odindi, John ;
Abdel-Rahman, Elfatih M. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (10) :3440-3458
[5]   Forty Years of Wetland Status and Trends Analyses in the Great Lakes Using Landsat Archive Imagery and Google Earth Engine [J].
Amani, Meisam ;
Kakooei, Mohammad ;
Ghorbanian, Arsalan ;
Warren, Rebecca ;
Mahdavi, Sahel ;
Brisco, Brian ;
Moghimi, Armin ;
Bourgeau-Chavez, Laura ;
Toure, Souleymane ;
Paudel, Ambika ;
Sulaiman, Ablajan ;
Post, Richard .
REMOTE SENSING, 2022, 14 (15)
[6]   Evaluation of the Landsat-Based Canadian Wetland Inventory Map Using Multiple Sources: Challenges of Large-Scale Wetland Classification Using Remote Sensing [J].
Amani, Meisam ;
Brisco, Brian ;
Mahdavi, Sahel ;
Ghorbanian, Arsalan ;
Moghimi, Armin ;
DeLancey, Evan R. ;
Merchant, Michael ;
Jahncke, Raymond ;
Fedorchuk, Lee ;
Mui, Amy ;
Fisette, Thierry ;
Kakooei, Mohammad ;
Ahmadi, Seyed Ali ;
Leblon, Brigitte ;
LaRocque, Armand .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 :32-52
[7]   Support Vector Machines for Landslide Susceptibility Mapping: The Staffora River Basin Case Study, Italy [J].
Ballabio, Cristiano ;
Sterlacchini, Simone .
MATHEMATICAL GEOSCIENCES, 2012, 44 (01) :47-70
[8]  
Ban YF, 2016, REMOTE SENS DIGIT IM, V20, P19, DOI 10.1007/978-3-319-47037-5_2
[9]  
Bengio Y., 2013, Intell Syst Ref Libr, P1, DOI 10.1007/978-3-642-36657-4_1
[10]   A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers [J].
Binh Thai Pham ;
Prakash, Indra ;
Dou, Jie ;
Singh, Sushant K. ;
Phan Trong Trinh ;
Hieu Trung Tran ;
Tu Minh Le ;
Tran Van Phong ;
Khoi, Dang Kim ;
Shirzadi, Ataollah ;
Dieu Tien Bui .
GEOCARTO INTERNATIONAL, 2020, 35 (12) :1267-1292