Multiple subharmonic solutions in Hamiltonian system with symmetries

被引:1
作者
Fan, Zhiping [1 ]
Zhang, Duanzhi [2 ,3 ]
机构
[1] Zhejiang Normal Univ, Coll Math Sci, Jinhua 321004, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
国家重点研发计划;
关键词
Subharmonic solutions; Subharmonic brake orbits; Maslov-type indices; Superquadratic Hamiltonian; systems; Galerkin approximation; PERIODIC-SOLUTIONS; BRAKE ORBITS; INDEX THEORY; MORSE INDEXES; EXISTENCE; EQUATIONS; SURFACES;
D O I
10.1016/j.jde.2022.12.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the existence of infinitely many non-constant geometrically distinct symmetric subharmonic solutions and symmetric subharmonic brake orbits for symmetric Hamiltonian systems which are superquadratic at zero and infinity by combining iteration theory of Maslov-type indices under various boundary conditions, the Galerkin approximation arguments and link theorem of critical point theory. Fur-thermore, we prove the existence of multiple geometrically distinct symmetric subharmonic solutions and symmetric subharmonic brake orbits for the symmetric Hamiltonian systems.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 48
页数:48
相关论文
共 45 条
[31]   Iteration theory of L-index and multiplicity of brake orbits [J].
Liu, Chungen ;
Zhang, Duanzhi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (04) :1194-1245
[32]  
Long Y., 2002, PROGR MATH, V207
[33]   Multiple brake orbits in bounded convex symmetric domains [J].
Long, YM ;
Zhang, DZ ;
Zhu, CF .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :568-635
[34]   Closed characteristics on compact convex hypersurfaces in R2n [J].
Long, YM ;
Zhu, CF .
ANNALS OF MATHEMATICS, 2002, 155 (02) :317-368
[35]   ON THE EXISTENCE OF PERIODIC-SOLUTIONS FOR A CLASS OF SYMMETRICAL HAMILTONIAN-SYSTEMS [J].
RABINOWITZ, PH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (05) :599-611
[36]   PERIODIC-SOLUTIONS OF HAMILTONIAN SYSTEMS [J].
RABINOWITZ, PH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (02) :157-184
[37]   ON SUB-HARMONIC SOLUTIONS OF HAMILTONIAN-SYSTEMS [J].
RABINOWITZ, PH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (05) :609-633
[38]  
Rabinowitz PH., 1986, CBMS regional conference series in mathematics, V65
[39]   THE MASLOV INDEX FOR PATHS [J].
ROBBIN, J ;
SALAMON, D .
TOPOLOGY, 1993, 32 (04) :827-844
[40]  
Seifert H., 1948, Math. Zeit, V51, P197