Multiple subharmonic solutions in Hamiltonian system with symmetries

被引:1
作者
Fan, Zhiping [1 ]
Zhang, Duanzhi [2 ,3 ]
机构
[1] Zhejiang Normal Univ, Coll Math Sci, Jinhua 321004, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
国家重点研发计划;
关键词
Subharmonic solutions; Subharmonic brake orbits; Maslov-type indices; Superquadratic Hamiltonian; systems; Galerkin approximation; PERIODIC-SOLUTIONS; BRAKE ORBITS; INDEX THEORY; MORSE INDEXES; EXISTENCE; EQUATIONS; SURFACES;
D O I
10.1016/j.jde.2022.12.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the existence of infinitely many non-constant geometrically distinct symmetric subharmonic solutions and symmetric subharmonic brake orbits for symmetric Hamiltonian systems which are superquadratic at zero and infinity by combining iteration theory of Maslov-type indices under various boundary conditions, the Galerkin approximation arguments and link theorem of critical point theory. Fur-thermore, we prove the existence of multiple geometrically distinct symmetric subharmonic solutions and symmetric subharmonic brake orbits for the symmetric Hamiltonian systems.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 48
页数:48
相关论文
共 45 条
[1]   A NOTE ON THE EXISTENCE OF MULTIPLE BRAKE ORBITS [J].
AMBROSETTI, A ;
BENCI, V ;
LONG, YM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 21 (09) :643-649
[2]   Subharmonic solutions of Hamiltonian systems and the Maslov-type index theory [J].
An, Tianqing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (01) :701-711
[3]  
[Anonymous], 1993, Infinite Dimensional Morse Theory and Multiple Solution Problems
[4]   FORCED VIBRATIONS OF SUPERQUADRATIC HAMILTONIAN-SYSTEMS [J].
BAHRI, A ;
BERESTYCKI, H .
ACTA MATHEMATICA, 1984, 152 (3-4) :143-197
[5]  
Bolotin S. V., 1978, Prikladnaya Matematika i Mekhanika, V42, P245
[6]  
BOLOTIN SV, 1978, VESTN MOSK U MAT M+, P72
[7]   ON THE MASLOV INDEX [J].
CAPPELL, SE ;
LEE, R ;
MILLER, EY .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (02) :121-186
[8]   SUBHARMONIC SOLUTIONS AND MORSE-THEORY [J].
CONLEY, C ;
ZEHNDER, E .
PHYSICA A, 1984, 124 (1-3) :649-657
[9]   MORSE-TYPE INDEX THEORY FOR FLOWS AND PERIODIC-SOLUTIONS FOR HAMILTONIAN EQUATIONS [J].
CONLEY, C ;
ZEHNDER, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (02) :207-253
[10]   The iteration formula of the Maslov-type index theory with applications to nonlinear Hamiltonian systems [J].
Dong, D ;
Long, YM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (07) :2619-2661