Jacobi-type functions defined by fractional Bessel derivatives

被引:7
|
作者
Bouzeffour, Fethi [1 ]
Jedidi, Wissem [2 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[2] King Saud Univ, Dept Stat & OR, Riyadh, Saudi Arabia
关键词
Fractional Bessel operator; Jacobi polynomials; Rodrigues' representations; finite Jacobi functions; ORDER;
D O I
10.1080/10652469.2022.2108419
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a class of even weight functions, generalizations of the classical Jacobi and Laguerre polynomials are defined via fractional Rodrigues' type formulas using the Bessel operators in the form (d(2)/dx(2))+((2 beta+1)/x)(d/dx). Their properties, including hypergeometric representation, differential recurrence relations and fractional boundary value problem, are investigated.
引用
收藏
页码:228 / 243
页数:16
相关论文
共 30 条