Controllable trajectory and shape of Hermite-Gaussian soliton clusters

被引:7
|
作者
Wang, Qing [1 ]
Zhu, Junying [2 ]
Wang, Jun [1 ]
Yu, Haiyan [1 ]
Hu, Beibei [3 ,4 ]
机构
[1] JiuJiang Univ, Inst Nonlinear Opt, Coll Sci, Jiujiang 334000, Jiangxi, Peoples R China
[2] JiuJiang Univ, Sch Mech & Intelligent Mfg, Jiujiang 334000, Jiangxi, Peoples R China
[3] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China
[4] Chuzhou Univ, Sch Math & Finance, Chuzhou 239000, Anhui, Peoples R China
关键词
Nonlinear media; Harmonic potential wells; Hermite-Gaussian solitons; Trajectory and shape controlling;
D O I
10.1016/j.chaos.2024.114580
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a kind of Hermite-Gaussian (HG) solitons, with off-axis and chirp parameters, propagating in nonlinear media with harmonic potential wells. The general formula for the trajectory of solitons is derived, and the propagation properties also be analyzed. The results shown that the off-axis HG solitons can present three different propagation states (including serpentine, elliptically and circularly spiral trajectory) depending on the value of the chirp parameter. Accordingly, we propose the concept of cluster composing of several HG solitons. The cluster shape depending on the off-axis parameters of each constituent soliton, and the chirp parameters also play important roles in the evolution of the clusters. Some typical examples are numerically demonstrated for graphically illustrating the propagation properties. Obviously, the controllable trajectory and shape of clusters may be applied in optical communication and particle controlling.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Generalised Hermite-Gaussian beams and mode transformations
    Wang, Yi
    Chen, Yujie
    Zhang, Yanfeng
    Chen, Hui
    Yu, Siyuan
    JOURNAL OF OPTICS, 2016, 18 (05)
  • [22] Generalized Asymmetric Hermite-Gaussian and Laguerre-Gaussian Beams
    Abramochkin, Eugeny G. G.
    Kotlyar, Victor V. V.
    Kovalev, Alexey A. A.
    Stafeev, Sergey S. S.
    PHOTONICS, 2023, 10 (06)
  • [23] OPTICAL PULSE MODELING WITH HERMITE-GAUSSIAN FUNCTIONS
    DASILVA, HJA
    OREILLY, JJ
    OPTICS LETTERS, 1989, 14 (10) : 526 - 528
  • [24] Partially coherent elegant Hermite-Gaussian beams
    Wang, F.
    Cai, Y.
    Eyyuboglu, H. T.
    Baykal, Y.
    Cil, C. Z.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 100 (03): : 617 - 626
  • [25] Entanglement of the Hermite-Gaussian modes states of photons
    Ren, XF
    Guo, GP
    Li, J
    Guo, GC
    PHYSICS LETTERS A, 2005, 341 (1-4) : 81 - 86
  • [26] Hermite-gaussian beams in inhomogeneous elastic media
    Klimeš L.
    Studia Geophysica et Geodaetica, 2002, 46 (Suppl 1) : 55 - 66
  • [27] Spatial Hermite-Gaussian solitons in optical lattices
    Trejo-Garcia, David
    Gonzalez-Hernandez, Diana
    Lopez-Aguayo, Daniel
    Lopez-Aguayo, Servando
    REAL-TIME MEASUREMENTS, ROGUE PHENOMENA, AND SINGLE-SHOT APPLICATIONS IV, 2019, 10903
  • [28] Focal switch of astigmatic Hermite-Gaussian beams
    Tao, XY
    Ji, XL
    Wang, CF
    Lü, BD
    OPTICS COMMUNICATIONS, 2004, 241 (4-6) : 429 - 435
  • [29] EVOLUTION OF BEAM QUALITY AND SHAPE OF HERMITE-GAUSSIAN BEAM IN NON-KOLMOGOROV TURBULENCE
    Chu, X.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2011, 120 : 339 - 353
  • [30] Mapping of Hermite-Gaussian modes in ABCD systems
    Alieva, T
    Bastiaans, MJ
    ICO20: OPTICAL INFORMATION PROCESSING, PTS 1 AND 2, 2006, 6027