Improving Text-Based Person Retrieval by Excavating All-Round Information Beyond Color

被引:2
|
作者
Zhu, Aichun [1 ]
Wang, Zijie [1 ]
Xue, Jingyi [1 ]
Wan, Xili [1 ]
Jin, Jing [1 ]
Wang, Tian [2 ]
Snoussi, Hichem [3 ]
机构
[1] Nanjing Tech Univ, Coll Comp & Informat Engn, Nanjing 211816, Peoples R China
[2] Beihang Univ, Inst Artificial Intelligence, Zhongguancun Lab, SKLCCSE, Beijing 100191, Peoples R China
[3] Univ Technol Troyes, Inst Charles Delaunay, LM2S FRE CNRS 2019, F-10004 Troyes, France
基金
中国国家自然科学基金;
关键词
Task analysis; Image color analysis; Visualization; Semantics; Data models; Pedestrians; Learning systems; Color (CLR) information; cross-modal retrieval; frequency; person reidentification (ReID); text-based person retrieval; NETWORK;
D O I
10.1109/TNNLS.2024.3368217
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Text-based person retrieval is the process of searching a massive visual resource library for images of a particular pedestrian, based on a textual query. Existing approaches often suffer from a problem of color (CLR) over-reliance, which can result in a suboptimal person retrieval performance by distracting the model from other important visual cues such as texture and structure information. To handle this problem, we propose a novel framework to Excavate All-round Information Beyond Color for the task of text-based person retrieval, which is therefore termed EAIBC. The EAIBC architecture includes four branches, namely an RGB branch, a grayscale (GRS) branch, a high-frequency (HFQ) branch, and a CLR branch. Furthermore, we introduce a mutual learning (ML) mechanism to facilitate communication and learning among the branches, enabling them to take full advantage of all-round information in an effective and balanced manner. We evaluate the proposed method on three benchmark datasets, including CUHK-PEDES, ICFG-PEDES, and RSTPReid. The experimental results demonstrate that EAIBC significantly outperforms existing methods and achieves state-of-the-art (SOTA) performance in supervised, weakly supervised, and cross-domain settings.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 14 条
  • [1] Improving Text-Based Person Retrieval by Excavating All-Round Information Beyond Color
    Zhu, Aichun
    Wang, Zijie
    Xue, Jingyi
    Wan, Xili
    Jin, Jing
    Wang, Tian
    Snoussi, Hichem
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (03) : 5097 - 5111
  • [2] CAIBC: Capturing All-round Information Beyond Color for Text-based Person Retrieval
    Wang, Zijie
    Zhu, Aichun
    Xue, Jingyi
    Wan, Xili
    Liu, Chao
    Wang, Tian
    Li, Yifeng
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 5314 - 5322
  • [3] Learning Semantic Polymorphic Mapping for Text-Based Person Retrieval
    Li, Jiayi
    Jiang, Min
    Kong, Jun
    Tao, Xuefeng
    Luo, Xi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 10678 - 10691
  • [4] SUM: Serialized Updating and Matching for text-based person retrieval
    Wang, Zijie
    Zhu, Aichun
    Xue, Jingyi
    Jiang, Daihong
    Liu, Chao
    Li, Yifeng
    Hu, Fangqiang
    KNOWLEDGE-BASED SYSTEMS, 2022, 248
  • [5] EESSO: Exploiting Extreme and Smooth Signals via Omni-frequency learning for Text-based Person Retrieval
    Xue, Jingyi
    Wang, Zijie
    Dong, Guan-Nan
    Zhu, Aichun
    IMAGE AND VISION COMPUTING, 2024, 142
  • [6] Cross-Modal Uncertainty Modeling With Diffusion-Based Refinement for Text-Based Person Retrieval
    Li, Shenshen
    Xu, Xing
    He, Chen
    Shen, Fumin
    Yang, Yang
    Shen, Heng Tao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (03) : 2881 - 2893
  • [7] DSSL: Deep Surroundings-person Separation Learning for Text-based Person Retrieval
    Zhu, Aichun
    Wang, Zijie
    Li, Yifeng
    Wan, Xili
    Jin, Jing
    Wang, Tian
    Hu, Fangqiang
    Hua, Gang
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 209 - 217
  • [8] Fine-grained Semantics-aware Representation Learning for Text-based Person Retrieval
    Wang, Di
    Yan, Feng
    Wang, Yifeng
    Zhao, Lin
    Liang, Xiao
    Zhong, Haodi
    Zhang, Ronghua
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 92 - 100
  • [9] Feature semantic alignment and information supplement for Text-based person search
    Zhou, Hang
    Li, Fan
    Tian, Xuening
    Huang, Yuling
    FRONTIERS IN PHYSICS, 2023, 11
  • [10] DCEL: Deep Cross-modal Evidential Learning for Text-Based Person Retrieval
    Li, Shenshen
    Xu, Xing
    Yang, Yang
    Shen, Fumin
    Mo, Yijun
    Li, Yujie
    Shen, Heng Tao
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 6292 - 6300