Chronic Spinal Cord Injury Regeneration with Combined Therapy Comprising Neural Stem/Progenitor Cell Transplantation, Rehabilitation, and Semaphorin 3A Inhibitor

被引:5
|
作者
Yoshida, Takashi [1 ]
Tashiro, Syoichi [1 ]
Nagoshi, Narihito [2 ]
Shinozaki, Munehisa [3 ]
Shibata, Takahiro [2 ]
Inoue, Mitsuhiro [4 ]
Ogawa, Shoji [5 ]
Shibata, Shinsuke [3 ,6 ]
Tsuji, Tetsuya [1 ]
Okano, Hideyuki [3 ]
Nakamura, Masaya [2 ]
机构
[1] Keio Univ, Dept Rehabil Med, Sch Med, Shinjuku Ku, Tokyo 1608582, Japan
[2] Keio Univ, Sch Med, Dept Orthopaed Surg, Shinjuku Ku, Tokyo 1608582, Japan
[3] Keio Univ, Dept Physiol, Sch Med, Shinjuku Ku, Tokyo 1608582, Japan
[4] Sumitomo Pharma, Regenerat & Cellular Med Kobe Ctr, Kobe, Hyogo 6500047, Japan
[5] Sumitomo Pharma, Formulat Res & Dev Labs, Suita, Osaka 5640053, Japan
[6] Niigata Univ, Grad Sch Med & Dent Sci, Div Microscop Anat, Niigata, Niigata 9518510, Japan
关键词
axon regeneration; cell transplantation; chronic phase spinal cord injury; rodent; semaphorin 3A inhibitor; treadmill training; FUNCTIONAL RECOVERY; STEM-CELLS; EXPRESSION; GROWTH; CORTEX;
D O I
10.1523/ENEURO.0378-23.2024
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Spinal cord injury (SCI) often results in various long-term sequelae, and chronically injured spinal cords exhibit a refractory feature, showing a limited response to cell transplantation therapies. To our knowledge, no preclinical studies have reported a treatment approach with results surpassing those of treatment comprising rehabilitation alone. In this study of rats with SCI, we propose a novel combined therapy involving a semaphorin 3A inhibitor (Sema3Ai), which enhances axonal regeneration, as the third treatment element in combination with neural stem/progenitor cell transplantation and rehabilitation. This comprehensive therapeutic strategy achieved significant improvements in host -derived neuronal and oligodendrocyte differentiation at the SCI epicenter and promoted axonal regeneration even in the chronically injured spinal cord. The elongated axons established functional electrical connections, contributing to significant enhancements in locomotor mobility when compared with animals treated with transplantation and rehabilitation. As a result, our combined transplantation, Sema3Ai, and rehabilitation treatment have the potential to serve as a critical step forward for chronic SCI patients, improving their ability to regain motor function.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] hiPSC-Neural Stem/Progenitor Cell Transplantation Therapy for Spinal Cord Injury
    Du, Xiaofeng
    Amponsah, Asiamah Ernest
    Kong, Desheng
    He, Jingjing
    Ma, Zhenhuan
    Ma, Jun
    Cui, Huixian
    CURRENT STEM CELL RESEARCH & THERAPY, 2023, 18 (04) : 487 - 498
  • [2] TRANSPLANTATION OF NEURAL PROGENITOR CELLS IN CHRONIC SPINAL CORD INJURY
    Jin, Y.
    Bouyer, J.
    Shumsky, J. S.
    Haas, C.
    Fischer, I.
    NEUROSCIENCE, 2016, 320 : 69 - 82
  • [3] Rehabilitation combined with neural progenitor cell grafts enables functional recovery in chronic spinal cord injury
    Lu, Paul
    Freria, Camila M.
    Graham, Lori
    Tran, Amanda N.
    Villarta, Ashley
    Yassin, Dena
    Huie, J. Russell
    Ferguson, Adam R.
    Tuszynski, Mark H.
    JCI INSIGHT, 2022, 7 (16)
  • [4] Functional Recovery from Neural Stem/Progenitor Cell Transplantation Combined with Treadmill Training in Mice with Chronic Spinal Cord Injury
    Tashiro, Syoichi
    Nishimura, Soraya
    Iwai, Hiroki
    Sugai, Keiko
    Zhang, Liang
    Shinozaki, Munehisa
    Iwanami, Akio
    Toyama, Yoshiaki
    Liu, Meigen
    Okano, Hideyuki
    Nakamura, Masaya
    SCIENTIFIC REPORTS, 2016, 6
  • [5] The Amelioration of Pain-Related Behavior in Mice with Chronic Spinal Cord Injury Treated with Neural Stem/Progenitor Cell Transplantation Combined with Treadmill Training
    Tashiro, Syoichi
    Nishimura, Soraya
    Shinozaki, Munehisa
    Takano, Morito
    Konomi, Tsunehiko
    Tsuji, Osahiko
    Nagoshi, Narihito
    Toyama, Yoshiaki
    Liu, Meigen
    Okano, Hideyuki
    Nakamura, Masaya
    JOURNAL OF NEUROTRAUMA, 2018, 35 (21) : 2561 - 2571
  • [6] Improving the therapeutic efficacy of neural progenitor cell transplantation following spinal cord injury
    Lane, Michael A.
    Lepore, Angelo C.
    Fischer, Itzhak
    EXPERT REVIEW OF NEUROTHERAPEUTICS, 2017, 17 (05) : 433 - 440
  • [7] Effect of neural stem cell transplantation combined with erythropoietin injection on axon regeneration in adult rats with transected spinal cord injury
    Zhao, Y.
    Zuo, Y.
    Wang, X. L.
    Huo, H. J.
    Jiang, J. M.
    Yan, H. B.
    Xiao, Y. L.
    GENETICS AND MOLECULAR RESEARCH, 2015, 14 (04) : 17799 - 17808
  • [8] Review of transplantation of neural stem/progenitor cells for spinal cord injury
    Mothe, Andrea J.
    Tator, Charles H.
    INTERNATIONAL JOURNAL OF DEVELOPMENTAL NEUROSCIENCE, 2013, 31 (07) : 701 - 713
  • [9] A Review of Treatment Methods Focusing on Human Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cell Transplantation for Chronic Spinal Cord Injury
    Shibata, Takahiro
    Tashiro, Syoichi
    Nakamura, Masaya
    Okano, Hideyuki
    Nagoshi, Narihito
    MEDICINA-LITHUANIA, 2023, 59 (07):
  • [10] Regeneration of Corticospinal Axons into Neural Progenitor Cell Grafts After Spinal Cord Injury
    Poplawski, Gunnar H. D.
    Tuszynski, Mark H.
    NEUROSCIENCE INSIGHTS, 2020, 15