On radial positive normalized solutions of the Nonlinear Schrödinger equation in an annulus

被引:2
作者
Liang, Jian [1 ,2 ]
Song, Linjie [1 ,2 ,3 ]
机构
[1] Acad Sinica, AMSS, Inst Math, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2024年 / 31卷 / 02期
关键词
Normalized solutions; Orbital stability; Nonlinear Schrodinger equations; Annulus; UNIQUENESS; EXISTENCE;
D O I
10.1007/s00030-023-00917-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in the following semilinear elliptic problem: { -Delta u+lambda u=u(p-1),x is an element of T, u>0,u=0on partial derivative T, integral(T)u(2)dx= cwhere T={x is an element of R-N:1<|x|<2}is an annulus inRN,N >= 2,p>1isSobolev-subcritical, searching for conditions (aboutc,Nandp) for the existence of positive radial solutions. We analyze the asymptotic behaviorofcas lambda ->+infinity and lambda ->-lambda 1to get the existence, non-existence and multiplicity of normalized solutions. Additionally, based on the properties of these solutions, we extend the results obtained in Pierotti et al. in CalcVar Partial Differ Equ 56:1-27, 2017. In contrast of the earlier results, a positive radial solution with arbitrarily large mass can be obtained whenN >= 3orifN= 2 and p<6. Our paper also includes the demonstrationof orbital stability/instability results.
引用
收藏
页数:14
相关论文
共 27 条
[11]   BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS [J].
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) :1794-1797
[12]  
Hajaiej H, 2025, Arxiv, DOI arXiv:2302.09681
[13]  
Hajaiej H, 2023, Arxiv, DOI arXiv:2208.11862
[14]   Existence of solutions with prescribed norm for semilinear elliptic equations [J].
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (10) :1633-1659
[15]   UNIQUENESS AND NONUNIQUENESS FOR POSITIVE RADIAL SOLUTIONS OF DELTA-U + F(U, R) = 0 [J].
NI, WM ;
NUSSBAUM, RD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (01) :67-108
[16]   Normalized solutions for nonlinear Schrodinger systems on bounded domains [J].
Noris, Benedetta ;
Tavares, Hugo ;
Verzini, Gianmaria .
NONLINEARITY, 2019, 32 (03) :1044-1072
[17]   EXISTENCE AND ORBITAL STABILITY OF THE GROUND STATES WITH PRESCRIBED MASS FOR THE L2-CRITICAL AND SUPERCRITICAL NLS ON BOUNDED DOMAINS [J].
Noris, Benedetta ;
Tavares, Hugo ;
Verzini, Gianmaria .
ANALYSIS & PDE, 2014, 7 (08) :1807-1838
[18]   Normalized bound states for the nonlinear Schrodinger equation in bounded domains [J].
Pierotti, Dario ;
Verzini, Gianmaria .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (05)
[19]   Symmetry for exterior elliptic problems and two conjectures in potential theory [J].
Sirakov, B .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (02) :135-156
[20]   Normalized ground states for the NLS equation with combined nonlinearities [J].
Soave, Nicola .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (09) :6941-6987