On radial positive normalized solutions of the Nonlinear Schrödinger equation in an annulus

被引:2
作者
Liang, Jian [1 ,2 ]
Song, Linjie [1 ,2 ,3 ]
机构
[1] Acad Sinica, AMSS, Inst Math, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2024年 / 31卷 / 02期
关键词
Normalized solutions; Orbital stability; Nonlinear Schrodinger equations; Annulus; UNIQUENESS; EXISTENCE;
D O I
10.1007/s00030-023-00917-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in the following semilinear elliptic problem: { -Delta u+lambda u=u(p-1),x is an element of T, u>0,u=0on partial derivative T, integral(T)u(2)dx= cwhere T={x is an element of R-N:1<|x|<2}is an annulus inRN,N >= 2,p>1isSobolev-subcritical, searching for conditions (aboutc,Nandp) for the existence of positive radial solutions. We analyze the asymptotic behaviorofcas lambda ->+infinity and lambda ->-lambda 1to get the existence, non-existence and multiplicity of normalized solutions. Additionally, based on the properties of these solutions, we extend the results obtained in Pierotti et al. in CalcVar Partial Differ Equ 56:1-27, 2017. In contrast of the earlier results, a positive radial solution with arbitrarily large mass can be obtained whenN >= 3orifN= 2 and p<6. Our paper also includes the demonstrationof orbital stability/instability results.
引用
收藏
页数:14
相关论文
共 27 条
[1]   Normalized solutions of mass supercritical Schrodinger equations with potential [J].
Bartsch, Thomas ;
Molle, Riccardo ;
Rizzi, Matteo ;
Verzini, Gianmaria .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (09) :1729-1756
[2]   A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems [J].
Bartsch, Thomas ;
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) :4998-5037
[3]   Normalized solutions of nonlinear Schrodinger equations [J].
Bartsch, Thomas ;
de Valeriola, Sebastien .
ARCHIV DER MATHEMATIK, 2013, 100 (01) :75-83
[4]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[5]   Normalized ground states of the nonlinear Schrodinger equation with at least mass critical growth [J].
Bieganowski, Bartosz ;
Mederski, Jaroslaw .
JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (11)
[6]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[8]   Asymptotic behavior of radial solutions for a semilinear elliptic problem on an annulus through Morse index [J].
Esposito, P. ;
Mancini, G. ;
Santra, Sanjiban ;
Srikanth, P. N. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 239 (01) :1-15
[9]   Pointwise Blow-Up Phenomena for a Dirichlet Problem [J].
Esposito, Pierpaolo ;
Petralla, Maristella .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (09) :1654-1682
[10]   Uniqueness of radially symmetric positive solutions for -Δu+u=up in an annulus [J].
Felmer, Patricio ;
Martinez, Salome ;
Tanaka, Kazunaga .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (05) :1198-1209