Structured dictionary learning of rating migration matrices for credit risk modeling

被引:1
作者
Allouche, Michael [1 ]
Gobet, Emmanuel [1 ]
Lage, Clara [1 ]
Mangin, Edwin [2 ]
机构
[1] Ecole Polytech, Inst Polytech Paris, Ctr Appl Math CMAP, CNRS, Route Saclay, F-91120 Palaiseau, France
[2] BNP Paribas, Dept Stress Testing & Financial Synth, Millenaire 1,35 rue Gare, F-75019 Paris, France
关键词
Rating migration matrix; Dictionary learning; Auto-regressive modeling; Interpretability; Gaussian Copula model; GAUSSIAN COPULA; SPARSE; IMAGE; REPRESENTATIONS;
D O I
10.1007/s00180-023-01449-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Rating migration matrix is a crux to assess credit risks. Modeling and predicting these matrices are then an issue of great importance for risk managers in any financial institution. As a challenger to usual parametric modeling approaches, we propose a new structured dictionary learning model with auto-regressive regularization that is able to meet key expectations and constraints: small amount of data, fast evolution in time of these matrices, economic interpretability of the calibrated model. To show the model applicability, we present a numerical test with both synthetic and real data and a comparison study with the widely used parametric Gaussian Copula model: it turns out that our new approach based on dictionary learning significantly outperforms the Gaussian Copula model.
引用
收藏
页码:3431 / 3456
页数:26
相关论文
共 32 条
[1]   Coherent measures of risk [J].
Artzner, P ;
Delbaen, F ;
Eber, JM ;
Heath, D .
MATHEMATICAL FINANCE, 1999, 9 (03) :203-228
[2]  
Bielecki T., 2002, CREDIT RISK MODELING
[3]   Metamodel of a Large Credit Risk Portfolio in the Gaussian Copula Model [J].
Bourgey, Florian ;
Gobet, Emmanuel ;
Rey, Clement .
SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2020, 11 (04) :1098-1136
[4]  
Box GEP., 2008, TIME SERIES ANAL FOR, DOI [10.1002/9781118619193, DOI 10.1002/9781118619193]
[5]  
CHAMBOLLE A., 2010, Theoretical Foundations and Numerical Methods for Sparse Recovery. ser., Radon Series on Computational and Applied Mathematics, V9, P227, DOI DOI 10.1515/9783110226157.263
[6]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[7]  
Cherubini U., 2004, Copula method in finance, DOI DOI 10.1002/9781118673331
[8]  
Cho Y, 2009, P 26 ANN INT C MACH, P169
[9]  
Dumitrescu B, 2018, Dictionary learning algorithms and applications, DOI DOI 10.1007/978-3-319-78674-2
[10]   Image denoising via sparse and redundant representations over learned dictionaries [J].
Elad, Michael ;
Aharon, Michal .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (12) :3736-3745