Post-processing for Bayesian analysis of reduced rank regression models with orthonormality restrictions

被引:0
作者
Assmann, Christian [1 ,2 ]
Boysen-Hogrefe, Jens [3 ]
Pape, Markus [4 ]
机构
[1] Leibniz Inst Educ Trajectories, Bamberg, Germany
[2] Otto Friedrich Univ Bamberg, Chair Survey Stat & Data Anal, Bamberg, Germany
[3] Kiel Inst World Econ, Kiel, Germany
[4] Ruhr Univ Bochum, Dept Econ, Bochum, Germany
关键词
Bayesian estimation; Post-processing; Reduced rank regression; Orthogonal transformation; Model selection; Stiefel manifold; Posterior predictive assessment; C11; C31; C51; C52; DYNAMIC FACTOR MODELS; MARGINAL LIKELIHOOD; SADDLEPOINT APPROXIMATIONS; NORMALIZING CONSTANTS; BESSEL-FUNCTIONS; POSTERIOR; BINGHAM; ERROR; MULTIVARIATE; SIMULATION;
D O I
10.1007/s10182-023-00489-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Orthonormality constraints are common in reduced rank models. They imply that matrix-variate parameters are given as orthonormal column vectors. However, these orthonormality restrictions do not provide identification for all parameters. For this setup, we show how the remaining identification issue can be handled in a Bayesian analysis via post-processing the sampling output according to an appropriately specified loss function. This extends the possibilities for Bayesian inference in reduced rank regression models with a part of the parameter space restricted to the Stiefel manifold. Besides inference, we also discuss model selection in terms of posterior predictive assessment. We illustrate the proposed approach with a simulation study and an empirical application.
引用
收藏
页码:577 / 609
页数:33
相关论文
共 64 条
[1]  
Abadir K M., 2005, Matrix Algebra. Econometric Exercises, DOI [DOI 10.1017/CBO9780511810800, 10.1017/cbo9780511810800]
[2]   Bayesian dynamic factor models and portfolio allocation [J].
Aguilar, O ;
West, M .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2000, 18 (03) :338-357
[3]  
[Anonymous], 2003, Lecture Notes in Statistics
[4]  
[Anonymous], 1964, Diagnostica
[5]   Bayesian analysis of static and dynamic factor models: An ex-post approach towards the rotation problem [J].
Assmann, Christian ;
Boysen-Hogrefe, Jens ;
Pape, Markus .
JOURNAL OF ECONOMETRICS, 2016, 192 (01) :190-206
[6]  
Basturk N., 2017, BAYESIAN ANAL, V12, P879, DOI DOI 10.1214/17-BA1061
[7]   Laplace approximation for Bessel functions of matrix argument [J].
Butler, RW ;
Wood, ATA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 155 (02) :359-382
[8]   High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics [J].
Carvalho, Carlos M. ;
Chang, Jeffrey ;
Lucas, Joseph E. ;
Nevins, Joseph R. ;
Wang, Quanli ;
West, Mike .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (484) :1438-1456
[9]   Computational and inferential difficulties with mixture posterior distributions. [J].
Celeux, G ;
Hurn, M ;
Robert, CP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (451) :957-970
[10]  
CELEUX G., 1998, Compstat, P227, DOI 10.1007/978-3-662-01131-7_26