Enhanced mechanical properties of nanocrystalline B4C-SiC composites by in-situ high pressure reactive sintering

被引:8
|
作者
Ma, Mengdong [1 ,2 ]
Sun, Rongxin [2 ]
Sun, Lei [2 ]
Wu, Yingju [2 ]
Ying, Pan [2 ]
Chu, Yanhui [3 ]
Zhao, Zhisheng [2 ]
Kang, Zhenhui [1 ]
He, Julong [2 ]
机构
[1] Macau Univ Sci & Technol, Macao Inst Mat Sci & Engn MIMSE, Taipa 999078, Macau, Peoples R China
[2] Yanshan Univ, Ctr High Pressure Sci CHiPS, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
[3] South China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510641, Peoples R China
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2023年 / 27卷
基金
国家重点研发计划; 美国国家科学基金会;
关键词
Boron carbide; High-pressure sintering; Hardness; Toughening; DIAMOND; HARDNESS;
D O I
10.1016/j.jmrt.2023.10.110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A unique optimized of core-shell structural B4C nanopowder, sintering aid additive of Si, and high-pressure sintering technique has been used to process nanocrystalline B4C-SiC ceramics with enhanced mechanical properties. C-coated B4C nanopowder was initially uniformly mixed with micron Si of different content by ballmilling. B4C-SiC composites with a homogenous distribution of SiC in B4C matrix were subsequently obtained by sintering the mixed powders at 6 GPa and 1600 degrees C. The added Si reacted with submicron amorphous carbon layer and amorphous carbon nanoshell to form dispersed SiC nanocrystals and Si-C phase filled at B4C grain boundaries and pores, respectively. The prepared composite had the most outstanding mechanical properties when the Si content in the precursor was 15 wt%, with a hardness reaching 37.8 GPa and a fracture toughness reaching 7.3 MPa & sdot;m1/2. Microstructural characterizations indicated that the multi deflection of nanoscale crack caused by intergranular fracture, the covalent bonding of Si-C phase at the grain boundary, and the abundant nanotwin substructure were jointly responsible for the superior performance in hardness and fracture toughness.
引用
收藏
页码:2790 / 2796
页数:7
相关论文
共 50 条
  • [31] Properties and ballistic tests of strong B4C-TiB2 composites densified by gas pressure sintering
    Sciti, Diletta
    Failla, Simone
    Turan, Servet
    Savaci, Umut
    Galizia, Pietro
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (04) : 1334 - 1342
  • [32] Microstructural and Mechanical Properties of Hot-pressed (B4C, SiC)/TiB2 Composites
    Akarsu, Ali Cem
    Gokce, Hasan
    Ertug, Burcu
    Addemir, A. Okan
    Ovecoglu, M. Lutfi
    Boyraz, Tahsin
    CFI-CERAMIC FORUM INTERNATIONAL, 2012, 89 (11-12): : E31 - E36
  • [33] Reactive sintering of B4C-TiB2 composites from B4C and TiO2 precursors
    Svec, Pavol
    Gabrisova, Zuzana
    Brusilova, Alena
    PROCESSING AND APPLICATION OF CERAMICS, 2020, 14 (04) : 329 - 335
  • [34] In situ reactive hot press sintering and mechanical properties of Al2O3–TiB2–B4C composites
    Haipeng Huang
    Journal of Materials Science, 2016, 51 : 3481 - 3489
  • [35] Evaluation of mechanical properties of Al-B4C and Al-SiC metal matrix composites - A comparison
    Kennedy, Z. Edward
    Raja, Arul Inigo
    MATERIALS TODAY-PROCEEDINGS, 2022, 55 : 380 - 383
  • [36] Microstructures and mechanical properties of B4C-SiC intergranular/intragranular nanocomposite ceramics fabricated from B4C, Si, and graphite powders
    Zhang, Zhixiao
    Du, Xianwu
    Li, Zili
    Wang, Weimin
    Zhang, Jinyong
    Fu, Zhengyi
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2014, 34 (10) : 2153 - 2161
  • [37] Phase Formation During Reactive Sintering of the B4C-SiC-Si(Al) Composite (Review)
    Ordan'yan, S. S.
    Nesmelov, D. D.
    Ovsienko, A. I.
    REFRACTORIES AND INDUSTRIAL CERAMICS, 2018, 58 (06) : 666 - 672
  • [38] Microstructure and mechanical properties of B4C-TiB2 composites reactive sintered from B4C + TiO2 precursors
    Svec, Pavol
    Caplovic, L'ubomir
    PROCESSING AND APPLICATION OF CERAMICS, 2022, 16 (04) : 358 - 366
  • [39] Microstructure and mechanical properties of B4C-TiB2 ceramic composites hot pressed with in-situ reaction
    Svec, P.
    Gabrisova, Z.
    Brusilova, A.
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2019, 20 (01): : 113 - 120
  • [40] High-Strength B4C-TaB2 Eutectic Composites Obtained via In Situ by Spark Plasma Sintering
    Demirskyi, Dmytro
    Sakka, Yoshio
    Vasylkiv, Oleg
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2016, 99 (07) : 2436 - 2441