A New Semantic Segmentation Framework Based on UNet

被引:8
作者
Fu, Leiyang [1 ,2 ]
Li, Shaowen [1 ,2 ]
机构
[1] Anhui Agr Univ, Sch Informat & Comp Sci, Hefei 230036, Peoples R China
[2] Anhui Prov Key Lab Smart Agr Technol & Equipment, Hefei 230036, Peoples R China
关键词
semantic segmentation; UNet; ensemble method; machine vision; environmental perception; IMAGE SEGMENTATION; MODELS;
D O I
10.3390/s23198123
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper discusses a semantic segmentation framework and shows its application in agricultural intelligence, such as providing environmental awareness for agricultural robots to work autonomously and efficiently. We propose an ensemble framework based on the bagging strategy and the UNet network, using RGB and HSV color spaces. We evaluated the framework on our self-built dataset (Maize) and a public dataset (Sugar Beets). Then, we compared it with UNet-based methods (single RGB and single HSV), DeepLab V3+, and SegNet. Experimental results show that our ensemble framework can synthesize the advantages of each color space and obtain the best IoUs (0.8276 and 0.6972) on the datasets (Maize and Sugar Beets), respectively. In addition, including our framework, the UNet-based methods have faster speed and a smaller parameter space than DeepLab V3+ and SegNet, which are more suitable for deployment in resource-constrained environments such as mobile robots.
引用
收藏
页数:14
相关论文
共 29 条
[1]  
Antonelli L., 2022, Ann. DellUniversita Ferrara, V68, P277, DOI [10.1007/s11565-022-00417-6, DOI 10.1007/S11565-022-00417-6]
[2]   Fully automatic segmentation of the brain in MRI [J].
Atkins, MS ;
Mackiewich, BT .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (01) :98-107
[3]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[4]   Microstructural segmentation using a union of attention guided U-Net models with different color transformed images [J].
Biswas, Momojit ;
Pramanik, Rishav ;
Sen, Shibaprasad ;
Sinitca, Aleksandr ;
Kaplun, Dmitry ;
Sarkar, Ram .
SCIENTIFIC REPORTS, 2023, 13 (01)
[5]   CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts [J].
Carreira, Joao ;
Sminchisescu, Cristian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (07) :1312-1328
[6]   Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields [J].
Chebrolu, Nived ;
Lottes, Philipp ;
Schaefer, Alexander ;
Winterhalter, Wera ;
Burgard, Wolfram ;
Stachniss, Cyrill .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2017, 36 (10) :1045-1052
[7]   Image segmentation via adaptive K-mean clustering and knowledge-based morphological operations with biomedical applications [J].
Chen, CW ;
Luo, JB ;
Parker, KJ .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (12) :1673-1683
[8]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[9]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[10]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709