DFA-Net: Multi-Scale Dense Feature-Aware Network via Integrated Attention for Unmanned Aerial Vehicle Infrared and Visible Image Fusion

被引:4
|
作者
Shen, Sen [1 ]
Li, Di [2 ]
Mei, Liye [2 ]
Xu, Chuan [2 ]
Ye, Zhaoyi [2 ]
Zhang, Qi [2 ]
Hong, Bo [3 ]
Yang, Wei [3 ]
Wang, Ying [3 ]
机构
[1] Naval Engn Univ, Sch Weap Engn, Wuhan 430032, Peoples R China
[2] Hubei Univ Technol, Sch Comp Sci, Wuhan 430068, Peoples R China
[3] Wuchang Shouyi Univ, Sch Informat Sci & Engn, Wuhan 430064, Peoples R China
关键词
infrared and visible fusion; unmanned aerial vehicles; image fusion; multi-scale feature; unsupervised gradient estimation; SHEARLET TRANSFORM; GRADIENT TRANSFER; DECOMPOSITION; PERFORMANCE; FRAMEWORK; ENHANCEMENT;
D O I
10.3390/drones7080517
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Fusing infrared and visible images taken by an unmanned aerial vehicle (UAV) is a challenging task, since infrared images distinguish the target from the background by the difference in infrared radiation, while the low resolution also produces a less pronounced effect. Conversely, the visible light spectrum has a high spatial resolution and rich texture; however, it is easily affected by harsh weather conditions like low light. Therefore, the fusion of infrared and visible light has the potential to provide complementary advantages. In this paper, we propose a multi-scale dense feature-aware network via integrated attention for infrared and visible image fusion, namely DFA-Net. Firstly, we construct a dual-channel encoder to extract the deep features of infrared and visible images. Secondly, we adopt a nested decoder to adequately integrate the features of various scales of the encoder so as to realize the multi-scale feature representation of visible image detail texture and infrared image salient target. Then, we present a feature-aware network via integrated attention to further fuse the feature information of different scales, which can focus on specific advantage features of infrared and visible images. Finally, we use unsupervised gradient estimation and intensity loss to learn significant fusion features of infrared and visible images. In addition, our proposed DFA-Net approach addresses the challenges of fusing infrared and visible images captured by a UAV. The results show that DFA-Net achieved excellent image fusion performance in nine quantitative evaluation indexes under a low-light environment.
引用
收藏
页数:18
相关论文
共 47 条
  • [1] Infrared and visible image fusion based on multi-scale dense attention connection network
    Chen Y.
    Zhang J.
    Wang Z.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (18): : 2253 - 2266
  • [2] MIAFusion: Infrared and Visible Image Fusion via Multi-scale Spatial and Channel-Aware Interaction Attention
    Lin, Teng
    Lu, Ming
    Jiang, Min
    Kong, Jun
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VIII, 2025, 15038 : 238 - 251
  • [3] Multi-scale unsupervised network for infrared and visible image fusion based on joint attention mechanism
    Xu, Dongdong
    Zhang, Ning
    Zhang, Yuxi
    Li, Zheng
    Zhao, Zhikang
    Wang, Yongcheng
    INFRARED PHYSICS & TECHNOLOGY, 2022, 125
  • [4] An infrared and visible image fusion network based on multi-scale feature cascades and non-local attention
    Xu, Jing
    Liu, Zhenjin
    Fang, Ming
    IET IMAGE PROCESSING, 2024, 18 (08) : 2114 - 2125
  • [5] Infrared and visible image fusion using multi-scale pyramid network
    Zuo, Fengyuan
    Huang, Yongdong
    Li, Qiufu
    Su, Weijian
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (05)
  • [6] Multi-scale attention-based lightweight network with dilated convolutions for infrared and visible image fusion
    Li, Fuquan
    Zhou, Yonghui
    Chen, YanLi
    Li, Jie
    Dong, ZhiCheng
    Tan, Mian
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (01) : 705 - 719
  • [7] UNFusion: A Unified Multi-Scale Densely Connected Network for Infrared and Visible Image Fusion
    Wang, Zhishe
    Wang, Junyao
    Wu, Yuanyuan
    Xu, Jiawei
    Zhang, Xiaoqin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (06) : 3360 - 3374
  • [8] AEFusion: A multi-scale fusion network combining Axial attention and Entropy feature Aggregation for infrared and visible images
    Li, Bicao
    Lu, Jiaxi
    Liu, Zhoufeng
    Shao, Zhuhong
    Li, Chunlei
    Du, Yifan
    Huang, Jie
    APPLIED SOFT COMPUTING, 2023, 132
  • [9] Integrating Parallel Attention Mechanisms and Multi-Scale Features for Infrared and Visible Image Fusion
    Xu, Qian
    Zheng, Yuan
    IEEE ACCESS, 2024, 12 : 8359 - 8372
  • [10] MCRD-Net: An unsupervised dense network with multi-scale convolutional block attention for multi-focus image fusion
    Zhou, Ding
    Jin, Xin
    Jiang, Qian
    Cai, Li
    Lee, Shin-jye
    Yao, Shaowen
    IET IMAGE PROCESSING, 2022, 16 (06) : 1558 - 1574