Analyzing the Scholarly Literature of Digital Twin Research: Trends, Topics and Structure

被引:11
作者
Emmert-Streib, Frank [1 ]
Tripathi, Shailesh [1 ,2 ]
Dehmer, Matthias [1 ,3 ,4 ,5 ]
机构
[1] Tampere Univ, Fac Informat Technol & Commun Sci, Predict Soc & Data Analyt Lab, Tampere 33100, Finland
[2] Univ Appl Sci Upper Austria, Prod & Operat Management, A-4400 Steyr, Austria
[3] UMIT Private Univ Hlth Sci Med Informat & Technol, Dept Biomed Comp Sci & Mechatron, A-6060 Tyrol, Austria
[4] Swiss Distance Univ Appl Sci, Dept Comp Sci, CH-3900 Brig, Switzerland
[5] Nankai Univ, Coll Artificial Intelligence, Tianjin 300071, Peoples R China
来源
IEEE ACCESS | 2023年 / 11卷
关键词
Data science; digital twin; scientometrics; natural language processing;
D O I
10.1109/ACCESS.2023.3290488
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Currently, studies involving a digital twin are gaining widespread interest. While the first fields adopting such a concept were in manufacturing and engineering, lately, interest extends also beyond these fields across all academic disciplines. Given the inviting idea behind a digital twin which allows the efficient exploitation and utilization of simulations such a trend is understandable. The purpose of this paper is to use a scientometrics approach to study the early publication history of the digital twin across academia. Our analysis is based on large-scale bibliographic and citation data from Scopus that provides authoritative information about high-quality publications in essentially all fields of science, engineering and humanities. This paper has four major objectives. First, we obtain a global overview of all publications related to a digital twin across all major subject areas. This analysis provides insights into the structure of the entire publication corpus. Second, we investigate the co-occurrence of subject areas appearing together on publications. This reveals interdisciplinary relations of the publications and identifies the most collaborative fields. Third, we conduct a trend and keyword analysis to gain insights into the evolution of the concept and the importance of keywords. Fourth, based on results from topic modeling using a Latent Dirichlet Allocation (LDA) model we introduce the definition of a scientometric dimension (SD) of digital twin research that allows to summarize an important aspect of the bound diversity of the academic literature.
引用
收藏
页码:69649 / 69666
页数:18
相关论文
共 50 条
  • [1] Aheleroff Shohin, 2020, Procedia CIRP, P1, DOI 10.1016/j.procir.2020.04.023
  • [2] Ball G. H., 1965, ISODATA NOVEL METHOD, V4, P1
  • [3] Bhatt Avantika, 2022, 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC), P682, DOI 10.1109/ICESC54411.2022.9885475
  • [4] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) : 993 - 1022
  • [5] Fast unfolding of communities in large networks
    Blondel, Vincent D.
    Guillaume, Jean-Loup
    Lambiotte, Renaud
    Lefebvre, Etienne
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [6] Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm
    Bruynseels, Koen
    de Sio, Filippo Santoni
    van den Hoven, Jeroen
    [J]. FRONTIERS IN GENETICS, 2018, 9
  • [7] A density-based method for adaptive LDA model selection
    Cao, Juan
    Xia, Tian
    Li, Jintao
    Zhang, Yongdong
    Tang, Sheng
    [J]. NEUROCOMPUTING, 2009, 72 (7-9) : 1775 - 1781
  • [8] The 'Digital Twin' to enable the vision of precision cardiology
    Corral-Acero, Jorge
    Margara, Francesca
    Marciniak, Maciej
    Rodero, Cristobal
    Loncaric, Filip
    Feng, Yingjing
    Gilbert, Andrew
    Fernandes, Joao F.
    Bukhari, Hassaan A.
    Wajdan, Ali
    Martinez, Manuel Villegas
    Santos, Mariana Sousa
    Shamohammdi, Mehrdad
    Luo, Hongxing
    Westphal, Philip
    Leeson, Paul
    DiAchille, Paolo
    Gurev, Viatcheslav
    Mayr, Manuel
    Geris, Liesbet
    Pathmanathan, Pras
    Morrison, Tina
    Cornelussen, Richard
    Prinzen, Frits
    Delhaas, Tammo
    Doltra, Ada
    Sitges, Marta
    Vigmond, Edward J.
    Zacur, Ernesto
    Grau, Vicente
    Rodriguez, Blanca
    Remme, Espen W.
    Niederer, Steven
    Mortier, Peter
    McLeod, Kristin
    Potse, Mark
    Pueyo, Esther
    Bueno-Orovio, Alfonso
    Lamata, Pablo
    [J]. EUROPEAN HEART JOURNAL, 2020, 41 (48) : 4556 - +
  • [9] DEVEAUD R, 2014, DOCUMENT NUMERIQUE, V0017
  • [10] Duan H., 2022, DIGIT TWIN, V2, P10, DOI [10.12688/digitaltwin.17599.1, DOI 10.12688/DIGITALTWIN.17599.1]