Big prime factors in orders of elliptic curves over finite fields

被引:0
作者
Bilu, Yuri [1 ,2 ]
Hong, Haojie [1 ,2 ]
Luca, Florian [3 ,4 ,5 ]
机构
[1] Univ Bordeaux, Inst Math Bordeaux, Bordeaux, France
[2] CNRS, Paris, ON, Canada
[3] Univ Witwatersrand, Sch Math, Johannesburg, South Africa
[4] Univ Bordeaux, IMB, Bordeaux, France
[5] UNAM, Ctr Ciencias Matemat, Morelia, Mexico
来源
PUBLICATIONES MATHEMATICAE DEBRECEN | 2023年 / 102卷 / 3-4期
关键词
prime factors; linear recurrent sequences; PRIMITIVE DIVISORS; NUMBER; LUCAS;
D O I
10.5486/PMD.2023.9460
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve over the finite field Fq. We prove that, when n is a sufficiently large positive integer, #E(Fqn) has a prime factor exceeding n exp(c log n/ log log n).
引用
收藏
页码:459 / 474
页数:16
相关论文
共 14 条
[1]  
AKBARY A., 2008, J RAMANUJAN MATH SOC, V23, P259
[2]  
[Anonymous], 1892, MONATSH MATH PHYS, DOI DOI 10.1007/BF01692444
[3]  
Bilu Y, 2001, J REINE ANGEW MATH, V539, P75
[4]  
Bilu Y, 2021, Arxiv, DOI arXiv:2108.09857
[5]   Binary polynomial power sums vanishing at roots of unity [J].
Bilu, Yuri ;
Luca, Florian .
ACTA ARITHMETICA, 2021, 198 (02) :195-217
[6]   On the numerical factors of the arithmetic forms alpha(n +/-) beta (n) . [J].
Carmichael, RD .
ANNALS OF MATHEMATICS, 1913, 15 :30-48
[7]   Primes, elliptic curves and cyclic groups [J].
Cojocaru, Alina Carmen .
ANALYTIC METHODS IN ARITHMETIC GEOMETRY, 2019, 740 :1-69
[8]  
ERDOS P., 1965, LECT MODERN MATH, VIII, P196
[9]   EXPLICIT INCREASES FOR THE NUMBER OF DIVISORS OF N [J].
NICOLAS, JL ;
ROBIN, G .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1983, 26 (04) :485-492
[10]   ESTIMATION OF THE TSCHEBYSCHEV THETA-FUNCTION OF THE KTH PRIME NUMBER AND HIGH VALUES OF THE OMEGA(N)-NUMBER FUNCTION OF PRIME N-DIVISORS [J].
ROBIN, G .
ACTA ARITHMETICA, 1983, 42 (04) :367-389