Contact Topology and the Classification of Disclination Lines in Cholesteric Liquid Crystals

被引:6
作者
Pollard, Joseph [1 ]
Alexander, Gareth P. [2 ,3 ]
机构
[1] Univ Durham, Dept Phys, Durham DH13LE, England
[2] Univ Warwick, Ctr Complex Sci, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
ORDERED MEDIA; DEFECTS; LOOPS;
D O I
10.1103/PhysRevLett.130.228102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a complete topological classification of defect lines in cholesteric liquid crystals using methods from contact topology. By focusing on the role played by the chirality of the material, we demonstrate a fundamental distinction between "tight" and "overtwisted" disclination lines not detected by standard homotopy theory arguments. The classification of overtwisted lines is the same as nematics, however, we show that tight disclinations possess a topological layer number that is conserved as long as the twist is nonvanishing. Finally, we observe that chirality frustrates the escape of removable defect lines, and explain how this frustration underlies the formation of several structures observed in experiments.
引用
收藏
页数:6
相关论文
共 48 条
[1]   Colloquium: Disclination loops, point defects, and all that in nematic liquid crystals [J].
Alexander, Gareth P. ;
Chen, Bryan Gin-Ge ;
Matsumoto, Elisabetta A. ;
Kamien, Randall D. .
REVIEWS OF MODERN PHYSICS, 2012, 84 (02) :497-514
[2]   Geometry of the Cholesteric Phase [J].
Beller, Daniel A. ;
Machon, Thomas ;
Copar, Simon ;
Sussman, Daniel M. ;
Alexander, Gareth P. ;
Kamien, Randall D. ;
Mosna, Ricardo A. .
PHYSICAL REVIEW X, 2014, 4 (03)
[3]   Three-Dimensional Active Defect Loops [J].
Binysh, Jack ;
Kos, Ziga ;
Copar, Simon ;
Ravnik, Miha ;
Alexander, Gareth P. .
PHYSICAL REVIEW LETTERS, 2020, 124 (08)
[4]   Maxwell's theory of solid angle and the construction of knotted fields [J].
Binysh, Jack ;
Alexander, Gareth P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (38)
[5]   DISTORTIONS WITH DOUBLE TOPOLOGICAL CHARACTER - CASE OF CHOLESTERICS [J].
BOULIGAND, Y ;
DERRIDA, B ;
POENARU, V ;
POMEAU, Y ;
TOULOUSE, G .
JOURNAL DE PHYSIQUE, 1978, 39 (08) :863-867
[6]   STUDY OF MESOMORPHIC TEXTURES .6. EDGE DISLOCATIONS AND SIGNIFICATION OF GRANDJEAN-CANO WALLS IN CHOLESTERICS [J].
BOULIGAND, Y .
JOURNAL DE PHYSIQUE, 1974, 35 (12) :959-981
[7]   Generating the Hopf Fibration Experimentally in Nematic Liquid Crystals [J].
Chen, Bryan Gin-ge ;
Ackerman, Paul J. ;
Alexander, Gareth P. ;
Kamien, Randall D. ;
Smalyukh, Ivan I. .
PHYSICAL REVIEW LETTERS, 2013, 110 (23)
[8]   Symmetry breaking in smectics and surface models of their singularities [J].
Chen, Bryan Gin-ge ;
Alexander, Gareth P. ;
Kamien, Randall D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (37) :15577-15582
[9]   Topological and geometric decomposition of nematic textures [J].
Copar, Simon ;
Zumer, Slobodan .
PHYSICAL REVIEW E, 2012, 85 (03)
[10]   Nematic disclinations as twisted ribbons [J].
Copar, Simon ;
Porenta, Tine ;
Zumer, Slobodan .
PHYSICAL REVIEW E, 2011, 84 (05)