QDN: A Quadruplet Distributor Network for Temporal Knowledge Graph Completion

被引:4
|
作者
Wang, Jiapu [1 ]
Wang, Boyue [1 ]
Gao, Junbin [2 ]
Li, Xiaoyan [1 ]
Hu, Yongli [1 ]
Yin, Baocai [1 ]
机构
[1] Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China
[2] Univ Sydney, Business Sch, Discipline Business Analyt, Sydney, NSW 2006, Australia
基金
中国国家自然科学基金;
关键词
Neural network; quadruplet distributor net-work (QDN); temporal knowledge graph completion (TKGC); temporal knowledge graph embedding;
D O I
10.1109/TNNLS.2023.3274230
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporal knowledge graph completion (TKGC) is an extension of the traditional static knowledge graph completion (SKGC) by introducing the timestamp. The existing TKGC methods generally translate the original quadruplet to the form of the triplet by integrating the timestamp into the entity/relation, and then use SKGC methods to infer the missing item. However, such an integrating operation largely limits the expressive ability of temporal information and ignores the semantic loss problem due to the fact that entities, relations, and timestamps are located in different spaces. In this article, we propose a novel TKGC method called the quadruplet distributor network (QDN), which independently models the embeddings of entities, relations, and timestamps in their specific spaces to fully capture the semantics and builds the QD to facilitate the information aggregation and distribution among them. Furthermore, the interaction among entities, relations, and timestamps is integrated using a novel quadruplet-specific decoder, which stretches the third-order tensor to the fourth-order to satisfy the TKGC criterion. Equally important, we design a novel temporal regularization that imposes a smoothness constraint on temporal embeddings. Experimental results show that the proposed method outperforms the existing state-of-the-art TKGC methods. The source codes of this article are available at https://github.com/QDN for Temporal Knowledge Graph Completion.git.
引用
收藏
页码:14018 / 14030
页数:13
相关论文
共 50 条
  • [41] Deep spatial and temporal graph convolutional network for rice planthopper population dynamic forecasting
    Zhang, Hongguo
    He, Binbin
    Xing, Jin
    Lu, Minghong
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 210
  • [42] STHSGCN: Spatial-temporal heterogeneous and synchronous graph convolution network for traffic flow prediction
    Yu, Xian
    Bao, Yin-Xin
    Shi, Quan
    HELIYON, 2023, 9 (09)
  • [43] SASTGCN: A Self-Adaptive Spatio-Temporal Graph Convolutional Network for Traffic Prediction
    Li, Wei
    Zhan, Xi
    Liu, Xin
    Zhang, Lei
    Pan, Yu
    Pan, Zhisong
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (08)
  • [44] Multi-Step-Ahead Electricity Price Forecasting Based on Temporal Graph Convolutional Network
    Su, Haokun
    Peng, Xiangang
    Liu, Hanyu
    Quan, Huan
    Wu, Kaitong
    Chen, Zhiwen
    MATHEMATICS, 2022, 10 (14)
  • [45] A multi-graph spatial-temporal attention network for air-quality prediction
    Chen, Xiaoxia
    Hu, Yue
    Dong, Fangyan
    Chen, Kewei
    Xia, Hanzhong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 181 : 442 - 451
  • [46] STGATP: A Spatio-Temporal Graph Attention Network for Long-Term Traffic Prediction
    Zhu, Mengting
    Zhu, Xianqiang
    Zhu, Cheng
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT III, 2021, 12893 : 255 - 266
  • [47] ST-ReGE: A Novel Spatial-Temporal Residual Graph Convolutional Network for CVD
    Zhang, Huaicheng
    Liu, Wenhan
    Chang, Sheng
    Wang, Hao
    He, Jin
    Huang, Qijun
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (01) : 216 - 227
  • [48] A two-phase knowledge distillation model for graph convolutional network-based recommendation
    Huang, Zhenhua
    Lin, Zuorui
    Gong, Zheng
    Chen, Yunwen
    Tang, Yong
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (09) : 5902 - 5923
  • [49] Prediction Model of Corrosion Rate for Oil and Gas Pipelines Based on Knowledge Graph and Neural Network
    Xie, Ruohan
    Fan, Zheng
    Hao, Xinyu
    Luo, Weibin
    Li, Yaoxiang
    Zhao, Yuntian
    Han, Jie
    PROCESSES, 2024, 12 (11)
  • [50] ConSTGAT: Contextual Spatial-Temporal Graph Attention Network for Travel Time Estimation at Baidu Maps
    Fang, Xiaomin
    Huang, Jizhou
    Wang, Fan
    Zeng, Lingke
    Liang, Haijin
    Wang, Haifeng
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 2697 - 2705