QDN: A Quadruplet Distributor Network for Temporal Knowledge Graph Completion

被引:4
|
作者
Wang, Jiapu [1 ]
Wang, Boyue [1 ]
Gao, Junbin [2 ]
Li, Xiaoyan [1 ]
Hu, Yongli [1 ]
Yin, Baocai [1 ]
机构
[1] Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China
[2] Univ Sydney, Business Sch, Discipline Business Analyt, Sydney, NSW 2006, Australia
基金
中国国家自然科学基金;
关键词
Neural network; quadruplet distributor net-work (QDN); temporal knowledge graph completion (TKGC); temporal knowledge graph embedding;
D O I
10.1109/TNNLS.2023.3274230
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporal knowledge graph completion (TKGC) is an extension of the traditional static knowledge graph completion (SKGC) by introducing the timestamp. The existing TKGC methods generally translate the original quadruplet to the form of the triplet by integrating the timestamp into the entity/relation, and then use SKGC methods to infer the missing item. However, such an integrating operation largely limits the expressive ability of temporal information and ignores the semantic loss problem due to the fact that entities, relations, and timestamps are located in different spaces. In this article, we propose a novel TKGC method called the quadruplet distributor network (QDN), which independently models the embeddings of entities, relations, and timestamps in their specific spaces to fully capture the semantics and builds the QD to facilitate the information aggregation and distribution among them. Furthermore, the interaction among entities, relations, and timestamps is integrated using a novel quadruplet-specific decoder, which stretches the third-order tensor to the fourth-order to satisfy the TKGC criterion. Equally important, we design a novel temporal regularization that imposes a smoothness constraint on temporal embeddings. Experimental results show that the proposed method outperforms the existing state-of-the-art TKGC methods. The source codes of this article are available at https://github.com/QDN for Temporal Knowledge Graph Completion.git.
引用
收藏
页码:14018 / 14030
页数:13
相关论文
共 50 条
  • [1] MADE: Multicurvature Adaptive Embedding for Temporal Knowledge Graph Completion
    Wang, Jiapu
    Wang, Boyue
    Gao, Junbin
    Pan, Shirui
    Liu, Tengfei
    Yin, Baocai
    Gao, Wen
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (10) : 5818 - 5831
  • [2] Geometric Algebra Based Embeddings for Static and Temporal Knowledge Graph Completion
    Xu, Chengjin
    Nayyeri, Mojtaba
    Chen, Yung-Yu
    Lehmann, Jens
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (05) : 4838 - 4851
  • [3] TSA-Net: a temporal knowledge graph completion method with temporal-structural adaptation
    Xie, Ruzhong
    Ruan, Ke
    Huang, Bosong
    Yu, Weihao
    Xiao, Jing
    Huang, Jin
    APPLIED INTELLIGENCE, 2024, 54 (21) : 10320 - 10332
  • [4] ConvTKG: A query-aware convolutional neural network-based embedding model for temporal knowledge graph completion
    He, Mingsheng
    Zhu, Lin
    Bai, Luyi
    NEUROCOMPUTING, 2024, 588
  • [5] ShallowBKGC: a BERT-enhanced shallow neural network model for knowledge graph completion
    Jia, Ningning
    Yao, Cuiyou
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [6] ShallowBKGC: a BERT-enhanced shallow neural network model for knowledge graph completion
    Jia N.
    Yao C.
    PeerJ Computer Science, 2024, 10 : 1 - 19
  • [7] Shared Embedding Based Neural Networks for Knowledge Graph Completion
    Guan, Saiping
    Jin, Xiaolong
    Wang, Yuanzhuo
    Cheng, Xueqi
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 247 - 256
  • [8] Distilling Knowledge Based on Curriculum Learning for Temporal Knowledge Graph Embeddings
    Zhang, Bin
    Li, Jiayin
    Dai, Yuanfei
    PROCEEDINGS OF THE 33RD ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2024, 2024, : 4248 - 4252
  • [9] Contextualized Graph Attention Network for Recommendation With Item Knowledge Graph
    Liu, Yong
    Yang, Susen
    Xu, Yonghui
    Miao, Chunyan
    Wu, Min
    Zhang, Juyong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 181 - 195
  • [10] A survey on temporal knowledge graph embedding: Models and applications
    Zhang, Yuchao
    Kong, Xiangjie
    Shen, Zhehui
    Li, Jianxin
    Yi, Qiuhua
    Shen, Guojiang
    Dong, Bo
    KNOWLEDGE-BASED SYSTEMS, 2024, 304